PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of the troughability test ISO 703 for quantifying a uniform transverse bending stiffness for conveyor belts

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a review of the troughability test specified in standard ISO 703 and associated models for quantifying the effective modulus of elasticity for uniform belt bending stiffness. For the interpretation of the test results, four analytical methods are employed: two theoretical ones that assume inextensible nonlinear bending of the belt's structure using the Euler–Bernoulli beam theory, and a Finite Element Method (FEM). The latter includes not only bending, but also stretching and shear effects, accommodating the Timoshenko theory for model with beam elements and the Mindlin–Reissner theory for model with shell elements. The present study compares the models, gives recommendations regarding their application and usage limitations. The impact of the varying effective modulus of elasticity, line mass and geometry on the belt's troughability is investigated within established parameters and limitations inherent to conveyor belts. The results indicate that the troughability test (ISO 703) in combination with an appropriate choice of the model for data extraction can be used for quantifying the effective modulus of elasticity. This conclusion is limited to small strain conditions (up till 5%). Analyses reveal that thick and narrow belts with a small belt width-to-thickness ratio reach this strain limitation at smaller troughability values.
Rocznik
Strony
249--270
Opis fizyczny
Bibliogr. 70 poz., rys., tab., wykr.
Twórcy
  • Delft University of Technology, Faculty of Mechanical, Maritime, and Materials Engineering, Department of Maritime and Transport Technology, Section of Transport Engineering and Logistics, Mekelweg 2, Delft 2628 CD, The Netherlands
autor
  • Delft University of Technology, Faculty of Mechanical, Maritime, and Materials Engineering, Department of Maritime and Transport Technology, Section of Transport Engineering and Logistics, Mekelweg 2, Delft 2628 CD, The Netherlands
Bibliografia
  • [1] S.M. Bošnjak, D.C.D. Oguamanam, N.Đ. Zrnić, The influence of constructive parameters on response of bucket wheel excavator superstructure in the out-of-resonance region, Archives of Civil and Mechanical Engineering 15 (2015) 977–985.
  • [2] E. Rusinski, S. Dragan, P. Moczko, D. Pietrusiak, Implementation of experimental method of determining modal characteristics of surface mining machinery in the modernization of the excavating unit, Archives of Civil and Mechanical Engineering 12 (2012) 471–476.
  • [3] T. Smolnicki, P. Maoelak, Multicaterpillar track chassis of big machines – identification of loads, Key Engineering Materials (2011) 187–194.
  • [4] D. Mazurkiewicz, Maintenance of belt conveyors using an expert system based on fuzzy logic, Archives of Civil and Mechanical Engineering 15 (2015) 412–418.
  • [5] NEN-EN-ISO 283, Textile Conveyor Belts – Full Thickness Tensile Strength, Elongation at Break and Elongation at the Reference Load – Test Method, 2007.
  • [6] NEN-EN-ISO 7622-1, Steel Cord Conveyor Belts – Longitudinal Traction Test – Part 1: Measurement of Elongation, 2013.
  • [7] NEN-EN-ISO 9856, Conveyor Belts – Determination of the Elastic and Permanent Elongation and Calculation of Elastic Modulus, 2004.
  • [8] NEN-EN-ISO 703, Conveyor Belts – Transverse Flexibility (troughability) – Test Method, 2007.
  • [9] NEN-EN-ISO 15236, Steel cord Conveyor Belts – Part 1: Design, Dimensions and Mechanical Requirements for Conveyor Belts for General Use, 2005.
  • [10] ISO 14890, Conveyor Belts – Specification for Rubber- or Plastics-Covered Conveyor Belts of Textile Construction for General Use, 2013.
  • [11] DIN 53504, Testing of Rubber – Determination of Tensile Strength at Break, Tensile Stress at Yield, Elongation at Break and Stress Values in a Tensile Test, 2009.
  • [12] DIN 22102, Conveyor Belts With Textile Plies for Bulk Goods, 2014.
  • [13] DIN 22129, Steel Cord Conveyor Belts for Underground coal Mining; Dimensions, Requirements, 1988.
  • [14] Conveyor Equipment Manufacturers Association (CEMA), Belt Conveyors for Bulk Materials, Florida, USA, 2005.
  • [15] M.E. Fayed, T.S. Skocir, Mechanical Conveyors: Selection and Operation, Technomic Pub. Co., Lancaster, PA, 1997.
  • [16] M.E. Zamiralova, G. Lodewijks, Measurement of a pipe belt conveyor contact forces and cross section deformation by means of the six-point pipe belt stiffness testing device, Measurement: Journal of the International Measurement Confederation (70) (2015) 232–246. , http://dx.doi.org/10.1016/ j.measurement.2015.03.045.
  • [17] ASTM D378, Standard Test Methods for Rubber (Elastomeric) Conveyor Belting, Flat Type, 2010.
  • [18] NEN-ISO 703, Conveyor Belts – Troughability – Transverse Flexibility – Characteristics and Test Method, 1988.
  • [19] R. Alles, W. Ernst, W.S.W. Lubrich, G. Bottcher, H. Simonsen, H. Zintarra, Conveyor Belt System Design, CONTI Conveyor Belt Service Manual, ContiTech Transportbandsysteme GmbH, Hannover, Germany, 1994.
  • [20] A. Harrison, A redefinition of troughability standards for conveyor belting, Bulk Solids Handling 6 (1986) 33–35.
  • [21] A. Harrison, Troughability measurement of fabric reinforces belting for powder and bulk handling industry, Bulk Solids Handling 7 (1987) 381–384.
  • [22] H.H. Oehmen, 1.500 km of stahlcord belting, Bulk Solids Handling 11 (1991) 881–891.
  • [23] NEN-EN-ISO 703-1, Conveyor Belts – Transverse Flexibility and Troughability – Part 1: Test Method, 2000.
  • [24] R. Brown, Physical Testing of Rubber, Springer, New York, 2006.
  • [25] NEN-EN-ISO 178, Plastics – Determination of Flexural Properties, 2010.
  • [26] NEN-EN-ISO 14125, Fibre-reinforced Plastic Composites – Determination of Flexural Properties, 1998.
  • [27] NEN-ISO 1209, Rigid Cellular Plastics – Determination of Flexural Properties: Part 1 – Basic Bending Test; Part 2 – Determination of Flexural Strength and Apparent Flexural Modulus of Elasticity, 2007.
  • [28] NEN-ISO 5893, Rubber and Plastics Test Equipment – Tensile, Flexural and Compression Types (Constant Rate of Traverse) – Specification, 2002.
  • [29] G. Lodewijks, Dynamics of Belt Systems, (Ph.D. thesis), Delft University of Technology, Delft, the Netherlands, 1996. p. 256.
  • [30] I. Petrikova, B. Marvalova, H.S. Tuan, P. Bocko, Experimental evaluation of mechanical properties of belt conveyor with textile reinforcement and numerical simulation of its behaviour, in: Constitutive Models for Rubber VIII, CRC Press, 2013, pp. 641–644.
  • [31] O. Schilling, M. Westerwald, J. Wiedenroth, ABAQUS FE analysis of a pipe conveyor using solids with embedded truss elements and shells with rebar layers, in: NAFEMS Seminar: Simulating Composite Materials and Structures, Bad Kissingen, Germany, 6–7 November, (2007) 1–10.
  • [32] M. Keller, Zur Optimierung hochfester Stahlseilgurtverbindungen, (Ph.D. thesis), Dem Fachbereich Maschinenbau der Universität Hannover, Germany, 2001.
  • [33] A.N. Gent, Engineering With Rubber. How to Design Rubber Components, 2nd ed., Hanser; HanserGardner Publications, Inc., Munich; Cincinnati, 2000.
  • [34] L.R.G. Treloar, The Physics of Rubber Elasticity, 3rd ed., Clarendon, Oxford, 2005.
  • [35] K. Czaplicka, Analysis of stress relaxation processes in conveyor belts, Mechanics of Composite Materials Mechanics of Composite Materials 30 (1995) 411–415.
  • [36] C. Wheeler, P. Munzenberger, Indentation rolling resistance of steel cord conveyor belts: a pseudo 3D viscoelastic finite element analysis, in: G. Lodewijks (Ed.), Current Developments in Bulk Solids Handling, Vogel Business Media GmbH & C. KG, 2010 37–47.
  • [37] D. Mazurkiewicz, Problems of numerical simulation of stress and strain in the area of the adhesive-bonded joint of a conveyor belt, Archives of Civil and Mechanical Engineering 9 (2009) 75–91.
  • [38] C.A. Wheeler, Analysis of the Main Resistances of Belt Conveyors, (Ph.D. thesis), The University of Newcastle, Australia, 2003.
  • [39] D.S. Kulagin, Establishing the bending radii curves of pipe belt conveyor in horizontal plane by computer simulation GIAB: Mining Informational and Analytical Bulletin (Scientific and Technical Journal), Moscow State Mining University 16 (2009) 114–129 (in Russian).
  • [40] V.G. Dmitriev, N.V. Sergeeva, Tension calculation of pipe belt conveyors, GIAB: Mining Informational and Analytical Bulletin (Scientific and Technical Journal), Moscow State Mining University (2009) 144–170 (in Russian).
  • [41] A. Harrison, Dynamics Measurement and Analysis of Steel Cord Conveyor Belts, (Ph.D. thesis), The University of Newcastle, Australia, 1984.
  • [42] ISO 18573, Conveyor Belts – Test Atmospheres and Conditioning Periods, 2012.
  • [43] K.E. Bisshopp, D.C. Drucker, Large deflections of cantilever beams, Quarterly of Applied Mathematics 3 (1945) 272–275.
  • [44] H.D. Conway, The large deflection of simply supported beams, Philosophical Magazine (1947) 905–911.
  • [45] F.V. Rohde, Large deflections of a cantilever beam with uniformly distributed load, Quarterly of Applied Mathematics 11 (1953) 337–338.
  • [46] H.-C. Lee, A.J. Durelli, V.J. Parks, Stresses in largely deflected cantilever beams subjected to gravity, Journal of Applied Mechanics 36 (1969) 323–325.
  • [47] E. Seames, H.D. Conway, A numerical procedure for calculating the large deflections of straight and curved beams, Journal of Applied Mechanics 24 (1957) 289–294.
  • [48] D.G. Fertis, Nonlinear Mechanics, CRC Press, Boca Raton, 1999.
  • [49] D.G. Fertis, A.O. Afonta, Equivalent systems for large deformation of beams of any stiffness variation, European Journal of Mechanics, A/Solids 10 (1991) 265–293.
  • [50] S.P. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed., McGraw-Hill, New York, 1959.
  • [51] A.T. Beck, C.R.A. da Silva Jr., Timoshenko versus Euler beam theory: pitfalls of a deterministic approach, Structural Safety 33 (2011) 19–25.
  • [52] V. Ivannikov, C. Tiago, P.M. Pimenta, On the boundary conditions of the geometrically nonlinear Kirchhoff–Love shell theory, International Journal of Solids and Structures 51 (2014) 3101–3112.
  • [53] L. Noels, R. Radovitzky, A new discontinuous Galerkin method for Kirchhoff–Love shells, Computer Methods in Applied Mechanics and Engineering 197 (2008) 2901–2929.
  • [54] E. Ventsel, T. Krauthammer, Thin Plates and Shells: Theory, Analysis, and Applications, Marcel Dekker, New York, 2001.
  • [55] J.N. Reddy, Theory and Analysis of Elastic Plates and Shells, 2nd ed., CRC Press, Boca Raton, 2007.
  • [56] M. Levinson, On higher order beam and plate theories, Mechanics Research Communications 14 (1987) 421–424.
  • [57] F.I. Baratta, When is a beam a plate? JACE – Journal of the American Ceramic Society 64 (1981) 86.
  • [58] J.F. Wang, R.H. Wagoner, D.K. Matlock, F. Barlat, Anticlastic curvature in draw-bend springback, International Journal of Solids and Structures 42 (2005) 1287–1307.
  • [59] C.R. Steele, C.D. Balch, Introduction to the Theory of Plates, Lecture Notes, Stanford University, Department of Mechanical Engineering, Division of Mechanics and Computation, 2009, pp. 1–41 http://web.stanford.edu/ _chasst/Course%20Notes/Introduction%20to%20the% 20Theory%20of%20Plates.pdf (accessed 10.11.14).
  • [60] S.D. Senturia, Microsystem Design, Kluwer Academic, Boston, 2002.
  • [61] T.M. Wang, Non-linear bending of beams with uniformly distributed loads, International Journal of Non-Linear Mechanics 4 (1969) 389–395.
  • [62] J.N. Reddy, I.R. Singh, Large deflections and large-amplitude free vibrations of straight and curved beams, International Journal for Numerical Methods in Engineering 17 (1981) 829–852.
  • [63] Dunlop Conveyor Belting, Technical Manual, Version 2.3, 2011 http://www.dunlopconveyorbelting.com/uploads/ media/Dunlop_Technical_Manual.pdf (accessed 14.07.14).
  • [64] J. Chadwick, Conveying the message, International Mining Magazine (2005) 29–34.
  • [65] Phoenix Conveyor Belt Systems GmbH, World Records: Highest Efficiency Conveyor Belts, Brochure No. PH 1001 E 12.12 (BL).
  • [66] Phoenix Conveyor Belt Systems GmbH, Phoenix Conveyor Belts Design Fundamentals, Brochure No. 513-102-0804.
  • [67] ContiTech Conveyor Belt Group, Rollgurtförderer, Closed- Trough Conveyor, Product Specification Brochure No. WT 4060 D/E 08, 2000 (Pl), 2000.
  • [68] D.G. Bellow, G. Ford, J.S. Kennedy, Anticlastic behavior of flat plates, Experimental Mechanics 5 (1965) 331.
  • [69] NEN-EN-ISO 583, Conveyor Belts With a Textile Carcass – Total Belt Thickness and Thickness of Constitutive Elements – Test Methods, 2007.
  • [70] NEN-EN-ISO 7590, Steel Cord Conveyor Belts – Methods for the Determination of Total Thickness and Cover Thickness, 2009.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5993cddb-06a2-4fd8-bd2a-edaf5170a4b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.