PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the consistency of structural measurements made using the traditional method and with the use of point cloud from terrestrial laser scanning in a selected site of Radków Bluff (Table Mountains, SW-Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results from two methods of structural analysis of the morphological rock escarpment are presented – a conventional technique, based on cartographic projection and set of structural measurements, and one based on processed point cloud data obtained from terrestrial laser scanning of the site (TLS). The results refer to one of the numerous sites located at the base of the nearly 40 km long vertical rock cliff (Radków Bluff) in Table Mountains, which locally reaches height of up to 50 m. The selected site in the area of so-called Radków Rocky Towers area is characterized by a complex and multi-stage structural pattern. A method of automatic and semi-automatic determination of discontinuity surfaces in the entire exposure was tested, with particular emphasis on zones of load induced fractures located at the base of the rock wall. The authors obtained a high convergence of the results generated from the point cloud analysis and those made by the traditional method using a geological compass. The paper suggests a correct and effective methodology for surveying and using data, as well as highlighting the benefits of documenting geological sites with the use of TLS. The analysis confirms the role and importance of fractures induced by a localized load in the process of destruction and retreat of morphological slopes.
Czasopismo
Rocznik
Tom
Strony
37--49
Opis fizyczny
Bibliogr. 68 poz., rys.
Twórcy
  • Institute of Geological Sciences, University of Wroclaw, Wroclaw, Poland
  • Department of Mining, Wroclaw University of Science and Technology, Wroclaw, Poland
Bibliografia
  • Assali P., Grussenmeyer P., Villemin T., Pollet N., Viguier F., 2014. Surveying and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry: Semi-automatic approaches for linear outcrop inspection. Journal of Structural Geology 66: 102–114. DOI: 10.1016/j.jsg.2014.05.014.
  • Assali P., Grussenmeyer P., Villemin T., Pollet N., Viguier F., 2016. Solid images for geostructural mapping and key block modeling of rock discontinuities. Computers & Geosciences 89: 21–31. DOI: 10.1016/j.cageo.2016.01.002.
  • August C., Awdankiewicz M., Wojewoda J., 1995. Trzeciorzędowe bazaltoidy, wulkanoklastyki i serie osadowe wschodniej części bloku przedsudeckiego. In: S.Cwojdziński (ed), Geologia i ochrona środowiska bloku przedsudeckiego. Przewodnik do LXVI Zjazdu PTG, Rocznik Polskiego Towarzystwa Geologicznego: 241–254.
  • Biernacka J., 2012. Provenance of Upper Cretaceous quartz-rich sandstones from the North Sudetic Synclinorium, SW Poland: Constraints from detrital tourmaline. Geological Quarterly 56: 315–332.
  • Biernacka J., Józefiak M., 2009. The Eastern Sudetic Island in the early-to-middle Turonian: Evidence from heavy minerals in the Jerzmanice sandstones, SW Poland. Acta Geologica Polonica 59: 45–565.
  • Buckley S.J., Howell J. A., Enge H.D., Kurz T. H., 2008. Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society 165(3): 625–638. DOI: 10.1144/0016-76492007-100.
  • Cacoń S., Mierzejewski M., Wojewoda J., 2002. Lite podłoże skalne i jego przemieszczenia w parkach narodowych i rezerwatach Sudetów. In: J.Pijanowska, B.Jaroszewicz, B.Jędrzęjewska (eds), Nauka w Parkach Narodowych. Kosmos 51(4): 399–406.
  • Cacoń S., Wojewoda J., Kapłon J., 2009. Geodynamic studies in the Góry Stołowe National Park area. Acta Geodynamica et Geomaterialia 6(3): 230–238.
  • Chen S., Walske M.L., Davies I.J., 2018. Rapid mapping and analysing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation. International Journal of Rock Mechanics and Mining Sciences 110: 28–35. DOI: 10.1016/j.ijrmms.2018.07.012.
  • Dassot M., Constant T., Fournier M., 2011. The use of terrestrial LiDAR technology in forest science: Application Fields, Benefits and Challenges. Annals of Forest Science 68: 959–974. DOI: 10.1007/s13595-011-0102-2.
  • Davis G.H., Reynolds S.J., Kluth C.F., 2012. Structural Geology of Rocks and Regions (3rd Edition). John Wiley & Sons Inc.
  • Dewez T., Girardeau-Montaut D., Allanic C., Rohmer J., 2016. Facets: a CloudCompare Plugin to Extract Geological Planes from Unstructured 3D Point Clouds. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B5: 799–804. DOI: 10.5194/isprsarchives-XLI-B5-799-2016.
  • Duszyński F., 2018. Mechanizmy i uwarunkowania rozwoju progów morfologicznych Gór Stołowych = Mechanisms and controls of escarpment evolution in Poland’s Stołowe Mountains. Przegląd Geograficzny 90(1): 7–33.
  • Duszyński F., Migoń P., 2015. Boulder aprons indicate long-term gradual and non-catastrophic evolution of cliffed escarpments, Stołowe Mts, Poland. Geomorphology 250: 63–77.
  • Duszyński F., Migoń P., 2017. Zespół skalny Dziedzińca na płaskowyżu Skalniaka w Górach Stołowych. Przyroda Sudetów 20: 199–218.
  • Duszyński F., Migoń P., Strzelecki M.C., 2015. The origin of sandstone boulder aprons along the escarpments of the Stołowe Mountains: are they all rockfall-derived? A new insight into an old problem using the CONEFALL 1.0 software. Bulletin of Geography. Physical Geography Series 8: 19–32.
  • Duszyński F., Migoń P., Kasprzak M., 2016. Underground erosion and sand removal from a sandstone tableland, Stołowe Mountains, SW Poland. Catena 147: 1–15.
  • Ferrero A.M., Forlani G., Roncella R., Voyat H., 2009. Advanced Geostructural Survey Methods Applied to Rock Mass Characterization. Rock Mechanics and Rock Engineering 42: 631–665. DOI: 10.1007/s00603-008-0010-4.
  • Gigli G., Casagli N., 2011. Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. International Journal of Rock Mechanics and Mining Sciences 48(2): 187–198. DOI: 10.1016/j.ijrmms.2010.11.009.
  • Jerzykiewicz T., 1968. Uwagi o genezie i orientacji ciosu w skałach górnokredowych niecki śródsudeckiej. Geologica Sudetica 4: 465–478.
  • Jerzykiewicz T., Wojewoda J., 1986. The Radków and Szczeliniec sandstones: An example of giant foresets on a tectonically controlled shelf of the Bohemian Cretaceous Basin (Central Europe). In: R.J.Knight, J.R.McLean (eds), Shelf Sands and Sandstones. Canadian Society of Petroleum Geologists Memoir 11: 1–35.
  • Kankare V., 2015. The prediction of single- tree biomass, logging recoveries and quality attributes with laser scanning techniques. Dissertationes Forestales 195. DOI: 10.14214/df.195.
  • Kekeç B., Bilim N., Karakaya E., Ghiloufi D., 2021. Applications of Terrestrial Laser Scanning (TLS) in Mining: A Review. Türkiye LİDAR Dergisi 3(1): 31–38.
  • Kemeny J., Donovan J., 2005. Rock mass characterisation using LIDAR and automated point cloud processing. Ground Engineering 38: 26–29.
  • Kemeny J., Turner K., Norton B., 2007. LIDAR for Rock Mass Characterization: Hardware, Software, Accuracy and Best-Practices. In: F.Tonon, J.T.Kottenstette (eds), Laser and Photogrammetric Methods for Rock Face Characterization: Report on a workshop held June 17–18, 2006 in Golden, Colorado.
  • Košciak B. 2000. Rock movement analysis of the monument of inanimate nature table hill – Szczeliniec Wielki. Szczeliniec 5: 3–39.
  • Kumar Singh S., Pratap Banerjee B., Raval, S., 2023. A review of laser scanning for geological and geotechnical applications in underground mining. International Journal of Mining Science and Technology 33(2): 133–154. DOI: 10.1016/j.ijmst.2022.09.022.
  • Lipecki T., Thi Thu Huong, K., 2020. Technologia Laserowego Skanowania Naziemnego Zastosowania w Szybie Pionowym w Polsce. Inżynieria Mineralna 1(2). DOI: 10.29227/IM-2020-02-36.
  • Mammoliti E., Di Stefano F., Fronzi D., Mancini A., Malinverni E.S., Tazioli A., 2022. A Machine Learning Approach to Extract Rock Mass Discontinuity Orientation and Spacing, from Laser Scanner Point Clouds. Remote Sensing 14(10): 2365. DOI: 10.3390/rs14102365.
  • Migoń P., Lidmar-Bergström K., 2001. Weathering mantles and their significance for geomorphological evolution of central and northern Europe since the Mesozoic. Earth-Science Reviews 56: 285–324.
  • Migoń P., Lidmar-Bergström K., 2002. Deep weathering through time in central and northwestern Europe: problems of dating and interpretation of geological record. Catena 49: 25–40.
  • Lato M., Diederichs M.S., Hutchinson D.J., Harrap R., 2009. Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses. International Journal of Rock Mechanics and Mining Sciences 46(1): 194–199. DOI: 10.1016/j.ijrmms.2008.04.007.
  • Lato M., Vöge M., 2012. Automated mapping of rock discontinuities in 3D LiDAR. International Journal of Rock Mechanics and Mining Sciences 54: 150–158. DOI: 10.1016/j.ijrmms.2012.06.003.
  • Leszczyński S., Chrząstek A., Halamski A.T., Nemec W., Wojewoda J., 2022. Cretaceous of the North Sudetic Synclinorium (southwestern Poland): Stratigraphy, origin and economic importance. In: J.Todes, I.Walaszczyk (eds), Cretaceous of Poland: 144–190.
  • Lukačić H., Krkač M., Gazibara S.B., Arbanas Ž., Mihalić Arbanas S., 2023. Detection of geometric properties of discontinuities on the Špičunak rock slope (Croatia) using high-resolution 3D Point Cloud generated from Terrestrial Laser Scanning. IOP Conference Series: Earth and Environmental Science 1124:012006. DOI: 10.1088/1755-1315/1124/1/012006.
  • Ollier C.D., 1978. Induced fracture and granite landforms. Zeitschrift fur Geomorphologie N.F. 22(3): 249–257.
  • Pagano M., Palma B., Ruocco A., Parise M., 2020. Discontinuity Characterization of Rock Masses through Terrestrial Laser Scanner and Unmanned Aerial Vehicle Techniques Aimed at Slope Stability Assessment. Applied Sciences 10(8): 2960. DOI: 10.3390/app10082960.
  • Pagounis V., Tsakiri M., Palaskas S., Biza B., Zaloumi E., 2006. 3D laser scanning for road safety and accident reconstruction. In: Proceedings of the XXIII International FIG congress, 8: 13–27.
  • Pan D., Li S., Xu Z., Zhang Y., Lin P., Li H., 2019. A deterministic-stochastic identification and modelling method of discrete fracture networks using laser scanning: Development and case study. Engineering Geology 262: 105310. DOI: 10.1016/j.enggeo.2019.105310.
  • Pfeifer N., Briese C., 2007. Laser scanning – principles and applications. GeoSiberia 2007 – International Exhibition and Scientific Congress. DOI: 10.3997/2214-4609.201403279.
  • Riegl Laser Measurement Systems, 2022. Riegl VZ-400i and LIS GeoTec datasheets.
  • Riquelme A., Tomás R., Cano M., Pastor J.L., Abellán A., 2018. Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mechanics and Rock Engineering 51: 3005–3028. DOI: 10.1007/s00603-018-1519-9.
  • Riquelme A., Tomás R., Cano M., Pastor J.L., Jordá-Bordehore L., 2021. Extraction of discontinuity sets of rocky slopes using iPhone-12 derived 3DPC and comparison to TLS and SfM datasets. IOP Conference Series: Earth and Environmental Science 833: 012056. DOI: 10.1088/1755-1315/833/1/012056.
  • Sokalski D., Wojewoda J., 2022. Analiza strukturalna zniszczeń zlokalizowanych górotworu z wykorzystaniem naziemnego skanera laserowego (TLS) – wybrane przykłady z wyrobiska podziemnego O/ZG Rudna i Progu Radkowa (Góry Stołowe). Conference 65. Rocznica odkrycia złoża rud miedzi na monoklinie przedsudeckiej. Wrocław-Krotoszyce.
  • Solecki A. 2011. Structural development of the epi-Variscan cover in the North Sudetic Synclinorium area. In: A.Żelażniewicz, J.Wojewoda, W.Ciężkowski (eds), Mezozoik i Kenozik Dolnego Śląska, WIND, Wrocław: 19–36.
  • Sturzenegger M., Stead D., 2009. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology 106(3–4):163–182. DOI: 10.1016/j.enggeo.2009.03.004.
  • Telling J., Lyda A., Hartzell P., Glennie C., 2017. Review of Earth science research using terrestrial laser scanning. Earth-Science Reviews 169: 35–68. DOI: 10.1016/j.earscirev.2017.04.007.
  • Thiele S.T., Grose L., Samsu A., Micklethwaite S., Vollgger S.A., Cruden A.R., 2017. Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data. Solid Earth 8: 1241–1253. DOI: 10.5194/se-8-1241-2017.
  • Vöge M., Lato M., Diederichs M.S., 2013. Automated rockmass discontinuity mapping from 3-dimensional surface data. Engineering Geology 164: 155–162. DOI: 10.1016/j.enggeo.2013.07.008.
  • Vos S., Anders K., Kuschnerus M., Lindenbergh R., Höfle B., Aarninkhof S., de Vries S., 2022. A high-resolution 4D terrestrial laser scan dataset of the Kijkduin beach-dune system, The Netherlands. Scientific Data 9: 191. DOI: 10.1038/s41597-022-01291-9.
  • Vosselman G., Maas H.-G., 2010. Airborne and Terrestrial Laser Scanning. Whittles Publishing, Caithes.
  • Wojewoda J., 1986. Fault scarp induced shelf sand bodies in Upper Cretaceous of the Intrasudetic Basin. In: A.K.Teisseyre (ed), 7 IAS Regional Meeting Guidebook, Excursion A-T: 1–30.
  • Wojewoda J., 1987. Seismotectonically induced sediments and
  • structures in the Upper Cretaceous sandstones of the Intrasudetic Basin. Przegląd Geologiczny 4: 169–175.
  • Wojewoda J., 2007. Neotectonic Aspect of the Intrasudetic Shear Zone. Acta Geodynamica et Geomaterialia 4: 1–11.
  • Wojewoda J., 2009. Žďarky–Pstrążna Dome: a strikeslip fault-related structure at the eastern termination of the Poříčí–Hronov Fault Zone (Sudetes). Acta Geodynamica et Geomaterialia, 6: 273–290.
  • Wojewoda J., 2012. Joints in Cretaceous sandstones of the Góry Stołowe Mountains: tectonic and non-tectonic. In: 13th Czech–Polish Workshop on Recent Geodynamics of the Sudety Mts. and Adjacent Areas, Wrocław–Pawłowice, Abstracts: 57–58.
  • Wojewoda J., 2019. The Intrasudetic Basins and Synclinorium in the extensional model of the Sudetes evolution – environmental and paleogeographic schemes. In: 20th Czech–Polish Workshop on Recent Geodynamics of the Sudeten and the Adjacent Areas, Jakuszyce, Abstracts: 23–28.
  • Wojewoda J., 2020a. Geoatrakcje pogranicza – Góry Stołowe i Broumowskie Ściany. B. Kokot vel Kokociński, Nowa Ruda.
  • Wojewoda J., 2020b. Mapa geoatrakcji Krainy Gór Stołowych i Broumowskich Ścian. Wydawnictwo Turystyczne PLAN.
  • Wojewoda J., Ollier C., 2013. Weathering induced fractures, examples from the Góry Stołowe Mts. In: M.Krobicki, A.Feldman-Olszewska (eds), Głębokomorska sedymentacja fliszowa, sedymentologiczne aspekty historii basenów karpackich. POKOS 5’2013, V Polska Konferencja Sedymentologiczna, Żywiec, Abstrakty: 57–58.
  • Wojewoda J., Kowalski A., 2016. The role of the South-Sudetic Shear Zone in the evolution of the Sudetes. In: J.Wojewoda, A.Kowalski (eds), Przewodnik do Wycieczek Kongresowych, 3. Polski Kongres Geologiczny, Wyzwania polskiej geologii. wycieczka 2.3: 21–43.
  • Wojewoda J., Kowalski A., 2017. Gravity-induced fractures (‘epigenetic fractures’) from the Radków Bluff (Stołowe Mountains) – structural evidence of the progressive sandstone scarp retreat. In: On Recent Geodynamics of the Sudety Mts. and Adjacent Areas, Szklarska Poręba.
  • Wojewoda J., Migoń P., Krzyszkowski D., 1995. Rozwój rzeźby i środowisk sedymentacji w młodszym trzeciorzędzie i starszym plejstocenie na obszarze środkowej części bloku przedsudeckiego: wybrane aspekty. In: S.Cwojdziński (ed), Geologia i ochrona środowiska bloku przedsudeckiego. Przewodnik do LXVI Zjazdu PTG: 315–331.
  • Wojewoda J., Koszela S., Aleksandrowski P., 2010. A kilometre-scale low-angle detachment related to strike-slip faulting in upper Cretaceous mudstones of the Table Mountains (Central Sudetes, SW Poland). In: 8th Meeting of the Central European Tectonic Group Studies (CETeG), Abstracts: 127.
  • Wojewoda J., Białek, D., Bucha M., Głuszyński A., Gotowała R., Krawczewski J., Schutty B., 2011. Geologia Parku Narodowego Gór Stołowych wybrane zagadnienia. In: T.Chodak, C.Kabała, J.Kaszubkiewicz, P.Migoń, J.Wojewoda (eds), Geoekologiczne Warunki Środowiska Przyrodniczego Parku Narodowego Gór Stołowych. WIND, Wrocław: 53–96.
  • Wojewoda J., Chrząstek A., Sokalski D., 2022. Late Cretaceous geodynamics in the Middle Sudetes area (sedimentary and ichnological record). In: J.Todes, I.Walaszczyk (eds), Cretaceous of Poland: 191–241.
  • Wu X., Wang F., Wang M., Zhang X., Wang Q., Zhang S.A., 2021. New Method for Automatic Extraction and Analysis of Discontinuities Based on TIN on Rock Mass Surfaces. Remote Sensing 13: 2894. DOI: 10.3390/rs13152894.
  • Wu C., Yuan Y., Tang Y., Tian B., 2022. Application of Terrestrial Laser Scanning (TLS) in the Architecture, Engineering and Construction (AEC Industry. Sensors 22(1):265. DOI: 10.3390/ s22010265
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-598cad86-c8a1-452d-8aa0-d4c51d71b3fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.