PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Urban Heat Island Effect of a Large City on the Physiological Stability of Tree Plantations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lviv (Ukraine), a city of about 1 million inhabitants, is classified as a Western Forest-Steppe according to the forestry zonation. The mesoclimatic anomaly in the western forest-steppe with its humid mild climate is composed of the sum of microclimates formed by the thermal regime. As in every large city, Lviv has historically developed a distinctive microclimate influenced by many natural and anthropogenic factors, including global climate change, urban development, population growth, landscape fires, etc. This contributes to the development of a heat island effect, which is characterised primarily by an increase in air temperature and a decrease in air humidity and is a negative factor for the development of vegetation in the city’s green zone. It was necessary to investigate the territory of the “dry island” – the lower tier of the “heat island” – to determine the level of vitality of the main woody plants located within these boundaries. As it could be observed, the “dry island” is located in the dense development of the central part of the city, where the temperature of the dead underlying surface (stone, asphalt, concrete) was in the range of 57–62 °C, the air temperature was 28.5–29.1 °C, and the humidity was 50.2–51.2%. Drought conditions affect the growth, development and reproductive capacity of woody plants. It has been established that the heat island should be reduced by urban greening in the horizontal and vertical ranges, and to maintain the physiological stability of tree plantations in the hot season, it is necessary to develop recommendations for the care of vegetation in the green zone of the city, depending on microclimatic indicators, especially air and soil temperatures, air and soil humidity.
Twórcy
  • Department of Landscape Architecture, Gardening and Urban Ecology, National Forestry University of Ukraine, str. Generala Chyprynky, 103, Lviv, 79000, Ukraine
  • Department of Landscape Architecture, Gardening and Urban Ecology, National Forestry University of Ukraine, str. Generala Chyprynky, 103, Lviv, 79000, Ukraine
  • Department of Environmental Safety, Lviv State University of Life Safety, Kleparivska Str. 35, Lviv, 79007, Ukraine
  • Department of Landscape Architecture, Gardening and Urban Ecology, National Forestry University of Ukraine, str. Generala Chyprynky, 103, Lviv, 79000, Ukraine
  • Department of Environmental Safety, Lviv State University of Life Safety, Kleparivska Str. 35, Lviv, 79007, Ukraine
  • Department of Environmental Safety, Lviv State University of Life Safety, Kleparivska Str. 35, Lviv, 79007, Ukraine
Bibliografia
  • 1. Bosak P., Popovych V., Stepova K., Dudyn R. 2020. Environmental impact and toxicological properties of mine dumps of the Lviv-Volyn Coal basin. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of geology and technical sciences, 2(440). 48–54. https://doi.org/10.32014/2020.2518-170X.30
  • 2. Farrell C., Livesley S.J., Arndt S.K., Beaumont L., Burley H., Ellsworth D., Esperon-Rodriguez M., Fletcher T.D., Gallagher R., Ossola A., Power S.A., Marchin R., Rayner J.P., Rymer P.D., Staas L., Szota C., Williams N.S.G., Leishman M. 2022. Can we integrate ecological approaches to improve plant selection for green infrastructure? Urban Forestry & Urban Greening, 76, 127732. https://doi.org/10.1016/j.ufug.2022.127732
  • 3. Jiang C., Li J., Hu Y., Yao Y., Li H. 2022. Construction of water-soil-plant system for rainfall vertical connection in the concept of sponge city: a review. Journal of Hydrology, 605, 127327. https://doi.org/10.1016/j.jhydrol.2021.127327
  • 4. Kabano P., Lindley S., Harris A. 2021. Evidence of urban heat island impacts on the vegetation growing season length in a tropical city. Landscape and Urban Planning, 206, 103989. https://doi.org/10.1016/j.landurbplan.2020.103989
  • 5. Khan A., Papazoglou E.G., Cartalis C., Philippopoulos K., Vasilakopoulou K., Santamouris M. 2022. On the mitigation potential and urban climate impact of increased green infrastructures in a coastal mediterranean city. Building and Environment, 221, 109264. https://doi.org/10.1016/j.buildenv.2022.109264
  • 6. Kobylkin D., Zachko O., Popovych V., Burak N., Golovatyi R., Wolff C. 2020. Models for changes management in infrastructure projects. CEUR Workshop Proceedings, 2565, 106–115.
  • 7. Kucheryavyj V.P., Henyk Ya.V., Kucheryavyj V.S., Shuplat T.I., Hotsii N.D. 2023. Environmental-spatial and thermophysical features of the formation of the heat island of Lvivs city center and vitality of tree plants. Scientific Bulletin of UNFU, 33(3), 23–33. https://doi.org/10.36930/40330304
  • 8. Kycheryavyi V., Popovych V. 2023. Esthetic assessment of the ornamental forms of northern white cedar (Thuja occidentalis L.) and their use in garden and park compositions. Journal of Agricultural Sciences (Belgrade), 68(3), 315–328. https://doi.org/10.2298/JAS2303315K
  • 9. Kycheryavyi V.S., Popovych V., Kycheryavyi V.P., Dyda O., Shuplat T., Bosak P. 2021. The Influence of Climatic and Edaphic Conditions on the Development of Thuja occidentalis ‘Smaragd’ Under the Urban Conditions of a Large City. Journal of Ecological Engineering, 22(4), 325–332. https://doi.org/10.12911/22998993/133094
  • 10. Marando F., Heris M.P., Zulian G., Udías A., Mentaschi L., Chrysoulakis N., Parastatidis D., Maes J. 2022. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustainable Cities and Society, 77, 103564. https://doi.org/10.1016/j.scs.2021.103564
  • 11. Maroni D., Cardoso G.T., Neckel A., Maculan L.S., Oliveira M.L.S., Bodah E.T., Bodah B.W., Santosh M. 2021. Land surface temperature and vegetation index as a proxy to microclimate. Journal of Environmental Chemical Engineering, 9(4), 105796. https://doi.org/10.1016/j.jece.2021.105796
  • 12. Meili N., Acero J.A., Peleg N., Manoli G., Burlando P., Fatichi S. 2021. Vegetation cover and plant-trait effects on outdoor thermal comfort in a tropical city. Building and Environment, Volume 195, 107733. https://doi.org/10.1016/j.buildenv.2021.107733
  • 13. Moser-Reischl A., Rahman M.A., Pauleit S., Pretzsch H., Rötzer T. 2019. Growth patterns and effects of urban micro-climate on two physiologically contrasting urban tree species. Landscape and Urban Planning, 183, 88–99. https://doi.org/10.1016/j.landurbplan.2018.11.004
  • 14. Nersesyan A., Mišík M., Cherkas A., Serhiyenko V., Staudinger M., Holota S., Yatskevych O., Melnyk S., Holzmann K., Knasmüller S. 2021. Use of micronucleus experiments for the detection of human cancer risks: a brief overview. Proceeding of the Shevchenko Scientific Society. Medical Sciences, 65(2), 50–58. https://doi.org/10.25040/ntsh2021.02.05
  • 15. Petlovanyi M.,Medianyk V., Sai K.,Malashkevych D., Popovych V. 2021. Geomechanical substantiation of the parameters for coal auger mining in the protecting pillars of mine workings during thin seams development. ARPN Journal of Engineering and Applied Sciences, 16(15), 1572–1582.
  • 16. Petlovanyi M., Sai K., Malashkevych D., Popovych V., Khorolskyi A. 2022. Influence of waste rock dump placement on the geomechanical state of underground mine workings. IV International Conference «Essays of mining science and practice» (RMGET-2022): IOP Conf. Series: Earth and Environmental Science 1156(2023), 012007. https://doi:10.1088/1755-1315/1156/1/012007
  • 17. Popovych V., Bosak P., Skyba T., Popovych N. 2024. Floristic and ecological structure of the landfills vegetation in the Western Forest steppe of Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 99–105. https://doi.org/10.33271/nvngu/2024-4/099
  • 18. Popovych V., Gapalo A. 2021. Monitoring of ground forest fire impact on heavy metals content in edafic horizons. Journal of Ecological Engineering, 22(5), 96–103. https://doi.org/10.12911/22998993/135872
  • 19. Popovych V., Stepova K., Voloshchyshyn A., Bosak P. 2019b. Physico-chemical properties of soils in Lviv-Volyn coal basin area. E3S Web of Conferences, 105, 02002. https://doi.org/10.1051/e3sconf/201910502002
  • 20. Popovych V., Voloshchyshyn A. 2019a. Features of temperature and humidity conditions of extinguishing waste heaps of coal mines in spring. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4(436), 230–237. https://doi.org/10.32014/2019.2518-170X.118
  • 21. Rahaman Z.A., Kafy A-Al., Saha M., Rahim A.A., Almulhim A.I., Rahaman Sk N., Fattah Md. A., Rahman M.T., Kalaivani S, Faisal A-Al., Rakib A-Al. 2022. Assessing the impacts of vegetation cover loss on surface temperature, urban heat island and carbon emission in Penang city, Malaysia. Building and Environment, 222, 109335, https://doi.org/10.1016/j.buildenv.2022.109335
  • 22. Serhiyenko V., Holzmann K., Holota S., Derkach Z., Nersesyan A., Melnyk S., Chernysh O., Yatskevych O., Mišík M., Bubalo V., Strilbytska O., Vatseba B., Lushchak O., Knasmüller S., Cherkas A. 2022a. An exploratory study of physiological and biochemical parameters to identify simple, robust and relevant biomarkers for therapeutic interventions for ptsd: study rationale, key elements of design and a context of war in Ukraine. Proceeding of the Shevchenko Scientific Society. Medical Sciences, 69(2). https://doi.org/10.25040/ntsh2022.02.14
  • 23. Serhiyenko V., Serhiyenko A. 2021. Diabetes mellitus and arterial hypertension. International Journal of Endocrinology (Ukraine), 17(2), 175–188. https://doi.org/10.22141/2224-0721.17.2.2021.230573
  • 24. Serhiyenko V., Serhiyenko A. 2022b. Ezetimibe and diabetes mellitus: a new strategy for lowering cholesterol. Miznarodnij Endokrinologicnij Zurnal, 18(5), 302–314. https://doi.org/10.22141/2224-0721.18.5.2022.1190
  • 25. Skrobala V., Popovych V., Tyndyk O., Voloshchyshyn A. 2022. Chemical pollution peculiarities of the Nadiya mine rock dumps in the Chervonohrad Mining District, Ukraine. Mining of Mineral Deposits, 16(4), 71–79. https://doi.org/10.33271/mining16.04.071
  • 26. Zhang W., Randall M., Jensen M.B., Brandt M., Wang Q., Fensholt R. 2021. Socio-economic and climatic changes lead to contrasting global urban vegetation trends. Global Environmental Change, 71, 102385. https://doi.org/10.1016/j.gloenvcha.2021.102385
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-598ac1bc-e033-4124-9b82-37a4b23393c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.