PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effectiveness of Phytoremediation Treatment of Pre-Treated Domestic Wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wastewater contamination which causes health, environmental and economic impacts is one of the most common environmental issues. Several methods have been used for the upgrade of the existing wastewater treatment facilities, nevertheless, the application of phytoremediation treatment is a promising and environmentally friendly method to avoid the secondary contaminations posed by the treatment dosage in other advanced treatment methods. The current work aimed to assess the phytoremediation treatment of the pre-treated domestic wastewater using the Salvinia molesta and water hyacinth plants. The water quality tests were performed in the current research to evaluate the effects of the phytoremediation treatment using the Salvinia molesta and water hyacinth plants on the responses of the water quality parameters. The study focused on varying two main parameters, namely the pH and the hydraulic retention time (HRT), while the removal rate was determined based on the reduction in the chemical oxygen demand (COD), total dissolved solids (TDS), total nitrogen (TN) and turbidity. The optimal removal of COD, TDS, TN and turbidity in the current study was 56.47, 83.00, 52.12, and 79.98% for Salvinia molesta as well as 48.81, 24.00, 13.56 and 19.89% for water hyacinth.
Twórcy
  • Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang, Selangor, Malaysia
autor
  • Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang, Selangor, Malaysia
  • Institute of Energy Infrastructure, Universiti Tenaga Nasional, 43000 Kajang, Selangor Darul Ehsan, Malaysia
Bibliografia
  • 1. Alade, G. A., & Ojoawo, S. O. (2009). Purification of domestic sewage by water-hyacinth (Eichhornia crassipes). International Journal of Environmental Technology and Management, 10(3-4), 286-294.
  • 2. Al-Baldawi, I. A., Abdullah, S. R. S., Almansoory, A. F., Hasan, H. A., & Anuar, N. (2020). Role of Salvinia molesta in biodecolorization of methyl orange dye from water. Scientific Reports, 10(1), 1-9.
  • 3. Al-Baldawi, I. A., Abdullah, S. R. S., Anuar, N., Suja, F., & Mushrifah, I. (2015). Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecological Engineering, 74, 463-473.
  • 4. Al-Hamadani, Y. A., Yusoff, M. S., Umar, M., Bashir, M. J., & Adlan, M. N. (2011). Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. Journal of Hazardous Materials, 190(1-3), 582-587.
  • 5. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869-881.
  • 6. Al-Khafaji, M. S., Al-Ani, F. H., & Ibrahim, A. F. (2018). Removal of some heavy metals from industrial wastewater by Lemmna minor. KSCE Journal of Civil Engineering, 22(4), 1077-1082.
  • 7. Al-Sahari, M., Al-Gheethi, A. A. S., & Mohamed, R. M. S. R. (2020). Natural Coagulates for Wastewater Treatment; A Review for Application and Mechanism. In Prospects of Fresh Market Wastes Management in Developing Countries (pp. 17-31). Springer, Cham.
  • 8. Ansari, A.A., Gill, S.S., Khan, F.A., & Naeem, M. (2014). Phytoremediation systems for the recovery of nutrients from eutrophic waters. In Eutrophication: causes, consequences and control (pp. 239-248). Springer, Dordrecht.
  • 9. Bhatti, Z.A., Maqbool, F., Malik, A.H., & Mehmood, Q. (2014). UASB reactor startup for the treatment of municipal wastewater followed by advanced oxidation process. Brazilian Journal of Chemical Engineering, 31(3), 715-726.
  • 10.Carboneras, M.B., Villaseñor, J., Fernández-Morales, F.J., Rodrigo, M.A., & Cañizares, P. (2018). Biological treatment of wastewater polluted with an oxyfluorfen-based commercial herbicide. Chemosphere, 213, 244-251.
  • 11. Chandanshive, V.V., Rane, N.R., Gholave, A.R., Patil, S.M., Jeon, B.H., & Govindwar, S.P. (2016). Efficient decolorization and detoxification of textile industry effluent by Salvinia molesta in lagoon treatment. Environmental Research, 150, 88-96.
  • 12. Chislock, M.F., Sharp, K.L., & Wilson, A.E. (2014). Cylindrospermopsis raciborskii dominates under very low and high nitrogen-to-phosphorus ratios. Water Research, 49, 207-214.
  • 13. Choi, Y.Y., Baek, S.R., Kim, J.I., Choi, J.W., Hur, J., Lee, T.U., ..., Lee, B.J. (2017). Characteristics and biodegradability of wastewater organic matter in municipal wastewater treatment plants collecting domestic wastewater and industrial discharge. Water, 9(6), 409.
  • 14. Corbella, C., & Puigagut, J. (2018). Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance. Science of the total environment, 631, 1406-1414.
  • 15. Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145-155.
  • 16. Das, P.K. (2018). Phytoremediation and nanoremediation: emerging techniques for treatment of acid mine drainage water. Def. Lif. Sci. J, 3(2), 190-196.
  • 17. Ding, S., Chen, M., Gong, M., Fan, X., Qin, B., Xu, H., ... & Zhang, C. (2018). Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Science of the Total Environment, 625, 872-884.
  • 18. Dipu, S., Kumar, A.A., & Thanga, V.S.G. (2011). Phytoremediation of dairy effluent by constructed wetland technology. The Environmentalist, 31(3), 263-278.
  • 19. Dvořák, L., Gómez, M., Dolina, J., & Černín, A. (2016). Anaerobic membrane bioreactors—a mini review with emphasis on industrial wastewater treatment: applications, limitations and perspectives. Desalination and Water Treatment, 57(41), 19062-19076.
  • 20. Dzantor, E.K. (2007). Phytoremediation: the state of rhizosphere ‘engineering’for accelerated rhizodegradation of xenobiotic contaminants. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 82(3), 228-232.
  • 21. Fahad, A., Mohamed, R.M.S., Radhi, B., & Al-Sahari, M. Wastewater and its Treatment Techniques: An Ample. Indian Journal of Science and Technology, 12, 25.
  • 22. Fang, Y.Y., Yang, X.E., Chang, H.Q., Pu, P.M., Ding, X.F., & Rengel, Z. (2007). Phytoremediation of nitrogen-polluted water using water hyacinth.Journal of Plant Nutrition, 30(11), 1753-1765.
  • 23. Goswami, L., Manikandan, N.A., Dolman, B., Pakshirajan, K., & Pugazhenthi, G. (2018). Biological treatment of wastewater containing a mixture of polycyclic aromatic hydrocarbons using the oleaginous bacterium Rhodococcus opacus. Journal of Cleaner Production, 196, 1282-1291.
  • 24. Guittonny-Philippe, A., Petit, M.E., Masotti, V., Monnier, Y., Malleret, L., Coulomb, B., ... & Laffont-Schwob, I. (2015). Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures. Journal of Environmental Management, 147, 108-123.
  • 25. Hossain, M.M., Sultana, F., & Islam, S. (2017). Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. In Plant-microbe interactions in agro-ecological perspectives (pp. 135-191). Springer, Singapore.
  • 26. Hülsen, T., Barry, E.M., Lu, Y., Puyol, D., Keller, J., & Batstone, D. J. (2016). Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor. Water Research, 100, 486-495.
  • 27. Ifon, B.E., Togbé, A.C.F., Tometin, L.A.S., Suanon, F., & Yessoufou, A. (2019). Metal-contaminated soil remediation: phytoremediation, chemical leaching and electrochemical remediation. In Metals in SoilContamination and Remediation. IntechOpen.
  • 28. Krayem, M., Deluchat, V., Rabiet, M., Cleries, K., Lenain, J.F., Saad, Z & Labrousse, P. (2016). Effect of arsenate As (V) on the biomarkers of Myriophyllum alterniflorum in oligotrophic and eutrophic conditions. Chemosphere, 147, 131-137.
  • 29. Kumar, S., & Deswal, S. (2020). Phytoremediation capabilities of Salvinia molesta, water hyacinth, water lettuce, and duckweed to reduce phosphorus in rice mill wastewater. International Journal of Phytoremediation, 1-13.
  • 30. Kumar, V., Singh, J., & Chopra, A.K. (2018). Assessment of phytokinetic removal of pollutants of paper mill effluent using water hyacinth (Eichhornia crassipes [Mart.] Solms). Environmental Technology, 39(21), 2781-2791.
  • 31. Kumar, V., Singh, J., Kumar, P., & Kumar, P. (2019). Response surface methodology based electro-kinetic modeling of biological and chemical oxygen demand removal from sugar mill effluent by water hyacinth (Eichhornia crassipes) in a Continuous Stirred Tank Reactor (CSTR). Environmental Technology & Innovation, 14, 100327.
  • 32. Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., & Ramsden, J. J. (2006). Biochemical mechanisms of detoxification in higher plants: basis of phytoremediation. Springer Science & Business Media.
  • 33. Lee, M., & Yang, M. (2010). Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. Journal of Hazardous Materials, 173(1-3), 589-596.
  • 34. Limmer, M., & Burken, J. (2016). Phytovolatilization of organic contaminants. Environmental Science & Technology, 50(13), 6632-6643.
  • 35. Maisa'a, W.S., & Zakaria, H. (2015). Water lentils (duckweed) in Jordan irrigation ponds as a natural water bioremediation agent and protein source for broilers. Ecological Engineering, 83, 71-77.
  • 36. Mara, D. (2013). Domestic wastewater treatment in developing countries. Routledge.
  • 37. Mateo‐Ramírez, F., Addi, H., Hernández‐Fernández, F.J., Godínez, C., Pérez de los Ríos, A., Lotfi, E.M., Lozano Blanco, L.J. (2017). Air breathing cathode‐microbial fuel cell with separator based on ionic liquid applied to slaughterhouse wastewater treatment and bio‐energy production. Journal of Chemical Technology & Biotechnology, 92(3), 642-648.
  • 38. Mishra, B., & Mohapatra, A. (2012). Removal of COD and TDS from industrial waste water. International Journal of Chemical Sciences, 10(1), 257-268.
  • 39. Moharram, M.A., Abdelhalim, H.S., & Rozaik, E. H. (2016). Anaerobic up flow fluidized bed reactor performance as a primary treatment unit in domestic wastewater treatment. HBRC journal, 12(1), 99-105.
  • 40. Munavalli, G.R., & Saler, P.S. (2009). Treatment of dairy wastewater by water hyacinth. Water Science and Technology, 59(4), 713-722.
  • 41. Munfarida, I., Auvaria, S.W., Suprayogi, D., & Munir, M. (2020, May). Application of Salvinia molesta for water pollution treatment using phytoremediation batch system. In IOP Conference Series: Earth and Environmental Science (Vol. 493, No. 1, p. 012002). IOP Publishing.
  • 42. Ng, Y.S., & Chan, D.J.C. (2017). Wastewater phytoremediation by Salvinia molesta.Journal of Water Process Engineering, 15, 107-115.
  • 43. Ng, Y.S., Samsudin, N.I.S., & Chan, D.J.C. (2017, June). Phytoremediation Capabilities of Spirodela polyrhiza and Salvinia molesta in Fish Farm Wastewater: A Preliminary Study. In IOP Conf. Ser. Mater. Sci. Eng., 29th Symposium of Malaysian Chemical Engineers (SOMChE) 2016 (pp. 1-14).
  • 44. Parlar, I., Hacıfazlıoğlu, M., Kabay, N.A.L.A.N., Pek, T.Ö., & Yüksel, M. (2019). Performance comparison of reverse osmosis (RO) with integrated nanofiltration (NF) and reverse osmosis process for desalination of MBR effluent. Journal of Water Process Engineering, 29, 100640.
  • 45. Powley, H.R., Dürr, H.H., Lima, A.T., Krom, M.D., & Van Cappellen, P. (2016). Direct discharges of domestic wastewater are a major source of phosphorus and nitrogen to the Mediterranean Sea. Environmental Science & Technology, 50(16), 8722-8730.
  • 46. Qin, H., Zhang, Z., Liu, M., Liu, H., Wang, Y., Wen, X., ... & Yan, S. (2016). Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Ecological Engineering, 95, 753-762.
  • 47. Quan, X., Ye, C., Xiong, Y., Xiang, J., & Wang, F. (2010). Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping. Journal of Hazardous Materials, 178(1-3), 326-332.
  • 48. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S.E. (2015). Microbial fuel cell as new technology for bioelectricity generation: A review.Alexandria Engineering Journal, 54(3), 745-756.
  • 49. Rai, P.K. (2012). An eco-sustainable green approach for heavy metals management: two case studies of developing industrial region. Environmental Monitoring and Assessment, 184(1), 421-448.
  • 50.Reichenauer, T.G., & Germida, J.J. (2008). Phytoremediation of organic contaminants in soil and groundwater. Chem Sus Chem, 1(8‐9), 708-717.
  • 51. Ruiz-García, A., Ruiz-Saavedra, E., & Feo-García, J. (2016). Start-up of brackish water desalination for agricultural irrigation in the Canary Islands (Spain). Desalination and Water Treatment, 57(48-49), 22734-22742.
  • 52. Sandoval, L., Zamora-Castro, S.A., Vidal-Álvarez, M., & Marín-Muñiz, J.L. (2019). Role of wetland plants and use of ornamental flowering plants in constructed wetlands for wastewater treatment: a review. Applied Sciences, 9(4), 685.
  • 53. Schröder, P., Navarro-Aviñó, J., Azaizeh, H., Goldhirsh, A.G., DiGregorio, S., Komives, T., ... & Ranalli, A. (2007). Using phytoremediation technologies to upgrade waste water treatment in Europe. Environmental Science and Pollution Research-International, 14(7), 490-497.
  • 54. Singh, H.P., Mahajan, P., Kaur, S., Batish, D.R., & Kohli, R.K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11(3), 229-254.
  • 55. Valipour, A., Hamnabard, N., Woo, K.S., & Ahn, Y.H. (2014). Performance of high-rate constructed phytoremediation process with attached growth for domestic wastewater treatment: Effect of high TDS and Cu.Journal of Environmental Management, 145, 1-8.
  • 56. Valipour, A., Raman, V.K., & Ahn, Y.H. (2015). Effectiveness of domestic wastewater treatment using a bio-hedge water hyacinth wetland system. Water, 7(1), 329-347.
  • 57. Varanasi, J. L., Kumari, S., & Das, D. (2018). Improvement of energy recovery from water hyacinth by using integrated system. International Journal of Hydrogen Energy, 43(3), 1303-1318.
  • 58. Varjani, S., Joshi, R., Srivastava, V.K., Ngo, H.H., & Guo, W. (2020). Treatment of wastewater from petroleum industry: current practices and perspectives. Environmental Science and Pollution Research, 27(22), 27172-27180.
  • 59. Vymazal, J., & Březinová, T. (2016). Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: a review. Chemical Engineering Journal, 290, 232-242.
  • 60. Wang, J., Koo, Y., Alexander, A., Yang, Y., Westerhof, S., Zhang, Q., ... & Alvarez, P. J. (2013). Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environmental Science & Technology, 47(10), 5442-5449.
  • 61. Wang, Q., Hu, Y., Xie, H., & Yang, Z. (2018). Constructed wetlands: A review on the role of radial oxygen loss in the rhizosphere by macrophytes. Water, 10(6), 678.
  • 62. Warner, N. R., Christie, C. A., Jackson, R. B., & Vengosh, A. (2013). Impacts of shale gas wastewater disposal on water quality in western Pennsylvania. Environmental Science & Technology, 47(20), 11849-11857.
  • 63. Wu, S., Vymazal, J., & Brix, H. (2019). Critical review: biogeochemical networking of iron in constructed wetlands for wastewater treatment. Environmental Science & Technology, 53(14), 7930-7944.
  • 64. Zhang, X.B., Peng, L.I.U., Yang, Y.S., & Chen, W.R. (2007). Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes.Journal of Environmental Sciences, 19(8), 902-909.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5986accc-0c19-4786-a1f3-98f8818e7683
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.