Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Accurate information on Young’s modulus (E) is required for simulating rock deformation in mines; on the other hand, it is very cumbersome to obtain in the laboratory and collecting drilled cores in sufficient amounts, especially in the case of soft rocks, is quite impossible. Empirical equations were deducted for - from easily determinable rock properties, and the final model was selected through different statistical strength parameter tests. The generalization of the equation was verified through the normal distribution tests of residues of the equation. R2 came to be 0.609 and was validated using an artificial neural network with an improved value of 0.73.
Wydawca
Czasopismo
Rocznik
Tom
Strony
41--54
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, India
autor
- Department of Civil Engineering, Techno Main Salt Lake, Kolkata, India
autor
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, India
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, India
autor
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, India
- National Institute of Technology Rourkela,India
Bibliografia
- [1] Bieniawski ZT. Engineering rock mass classifications. Wiley; 1989.
- [2] Bell FG. The physical and mechanical properties of the fell sandstones Northumberland. England. Eng. Geol. 1978;12:1-29. https://doi.org/10.1016/0013-7952 (78)90002-9.
- [3] Mishra DA, Basu A. Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Eng Geol 2013;160:54-68. https://doi.org/10.1016/j.enggeo.2013.04.004.
- [4] Madhubabu N, Singh PK, Kainthola A, Mahanta B, Tripathy A, Singh TN. Prediction of compressive strength and elastic modulus of carbonate rocks. Measurement 2016; 88:202-13. https://doi.org/10.1016/j.measurement.2016.03.050.
- [5] Singh R, Umrao RK, Ahmad M, Ansari MK, Sharma LK, Singh TN. Prediction of geomechanical parameters using soft computing and multiple regression approach. Measurement 2017;99:108-19. https://doi.org/10.1016/j.measurement.2016.12.023.
- [6] Armaghani DJ, Amin MFM, Yagiz S, Faradonbeh RS, Abdullah RA. Prediction of the uniaxial compressive strength of sandstone using various modelling techniques. Int J Rock Mech Min Sci 2016;85:174-86. https://doi.org/10.1016/j.ijrmms.2016.03.018.
- [7] Singh RN, Hassani FP, Elkington PAS. The application of strength and deformation index testing to the stability assessment of coal measures excavations. In: Proceedingsofth-24thUSRockMechanicsSymposium. AEG: Texas A&M University; 1983.
- [8] Cargill JS, Shakoor A. Evaluation of empirical methods for measuring the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 1990;27(6):495-503. https://doi.org/10.1016/0148-9062(90)91001-N.
- [9] Tugrul A, Zarif IH. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 1999;51(4):303-17. https://doi.org/10.1016/S0013-7952(98)00071-4.
- [10] Sulukcu S, Ulusay R. Evaluation of the block punch index test with particular reference to the size effect, failure mechanism and its effectiveness in predicting rock strength. Int J Rock Mech Min Sci 2001;38(8):1091-111. https://doi.org/10.1016/S1365-1609(01)00079-X.
- [11] Kahraman S. Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 2001;38(7):981-94. https://doi.org/10.1016/S1365-1609(01)00039-9.
- [12] Yasar E, Erdogan Y. Estimation of rock physio mechanical properties using hardness methods. Eng Geol 2004;71(3-4): 281-8. https://doi.org/10.1016/S0013-7952(03)00141-8.
- [13] Basu A, Aydin A. Predicting uniaxial compressive strength by point load 379 test: significance of cone penetration. Rock Mech Rock Eng 2006;39:483-90. https:/doi 10.1007/s00603-006-0082-y.
- [14] Sharma PK, Singh TNA. Correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ 2008;67(1):17-22. https://doi.org/10.1007/s10064-007-0109-y.
- [15] Meulenkamp F, GrimaM Alvarez. Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness. Int J Rock Mech Min Sci 1999;36(1):29-39. https://doi.org/10.1016/S0148-3859062(98)00173-9.
- [16] Gokceoglu C, Zorlu K. A fuzzy model to predict the unconfined compressive strength and modulus of elasticity of a problematic rock. Eng Appl Artif Intell 2004;17(1):61-72. https://doi.org/10.1016/j.engappai.2003.11.006.
- [17] Yagiz S. Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull Eng Geol Environ 2009;68(1):55-63. https://doi.org/10.1007/s10064-008-0172-z.
- [18] Dehghan S, Sattari GH, Chehreh CS, Aliabadi MA. Prediction of unconfined compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural. New Min Sci Technol 2010;20(1):41-6. https://doi.org/10.1016/S1674-5264(09)60158-7.
- [19] Yesiloglu-Gultekin N, Gokceoglu C, Sezer EA. Prediction of uniaxial compressive strength of granitic rocks by various non-linear tools and comparison of their performances. Int J Rock Mech Min Sci 2013;62:113-22. https://doi.org/10.1016/j.ijrmms.2013.05.005.
- [20] Rezaei M, Majdi A, Monjezi M. An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining. Neural Comput Appl 2014;24(1):233-41. https://doi.org/10.1007/s00521-012-1221-.
- [21] Elkatatny S, Mahmoud M, Mohamed I, Abdulraheem A. Development of a new correlation to determine the static Young's modulus. J Pet Explor Prod Technol 2018;8(1):17-30. https://doi.org/10.1007/s13202-017-0316-4.
- [22] Cevik A, Sezer EA, Cabalar AF, Gokceoglu C. Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network. Appl Soft Comput 2011;11(2):2587-94. https://doi.org/10.1016/j.asoc.2010.10.008.
- [23] Ozbek A, Unsal M, Dikec A. Estimating uniaxial compressive strength of rocks using genetic expression programming. Journal of Rock Mechanics and Geotechnical Engineering 2013;5(4):325-9. tps://doi.org/10.1016/j.jrmge.2013.05.006.
- [24] Dehghan S, Sattari GH, Chelgani SC, Aliabadi MA. Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Min Sci Technol 2010;20(1):41-6. https://doi.org/10.1016/S1674-5264(09)60158-7.
- [25] Karakul H, Ulusay R. Empirical correlations for predicting strength properties of rocks from P-wave velocity under different degrees of saturation. Rock Mech Rock Eng 2013;46(5):981-99. https://doi.org/10.1007/s00603-012-0353-8.
- [26] Khandelwal M, Ranjith PG. Correlating index properties of rocks with P-wave measurements. J Appl Geophys 2010; 71(1):1-5. https://doi.org/10.1016/j.jappgeo.2010.01.007.
- [27] Kurtulus ̧C, Sertçelik F, Sertçelik I. Correlating physico-mechanical properties of intact rocks with P-wave velocity. Acta GeodGeophys 2016;51(3):571-582N. https://doi.org/10.1007/s40328-015-0145-1.
- [28] Závacký M, Štefaňák J, Horák V, Mica L. Statistical estimate of uniaxial compressive strength of rock based on Shore hardness. Procedia Eng 2017;191:248-55. https://doi.org/10.1016/j.proeng.2017.05.178.
- [29] Małkowski P, Ł Ostrowski. The methodology for the Young modulus derivation for rocks and its value. Procedia Eng 2017. https://doi.org/10.1016/j.proeng.2017.05.164.
- [30] Labuz JF. The problem of machine stiffness revisited. Letture 1991;18(3):439-42. https://doi.org/10.1029/91GL00350.
- [31] Hockett JE, Gillis PP. Mechanical testing machine stiffness: Part I - theory and calculations. Int J Mech Sci 1971;13(3):251-64. https://doi.org/10.1016/0020-7403 (71)90007-5.
- [32] Karacan C Ö. Elastic and shear moduli of coal measure rocks derived from basic well logs using fractal statistics and radial basis functions. Int J Rock Mech Min Sci 2009;46(8):1281-95. https://doi.org/10.1016/j.ijrmms.2009.04.002.
- [33] Chakraborty S, Bisai R, Palaniappan SK, Pal SK. Characterization of fracture pattern of Indian coal measure rock under uniaxial compression stress by statistical analysis of fractal dimension of the microcrack orientation. J Inst Eng (India) 2022;103:95-106. https://doi.org/10.1007/s40033-021-00308-8.
- [34] Bisai R, Palaniappan SK, Pal SK. Influence of individual and combined pre-treatment on the strength properties of granite and sandstone. Arabian J Geosci 2020;13:7. https://doi.org/10.1007/s12517-019-5009-5.
- [35] Field A. Discovering statistics using IBM SPSS statistics. Sage; 2013.
- [36] NIST/SEMATECH e-handbook of statistical methods. Accessed 24/09/2020, https://www.itl.nist.gov/div898/handbook/eda/section3/contour.htm#:~:text_A%20contour%20plot%20is %20a,where%20that%20z%20value%20occurs.
- [37] Patryla L, Galeriua D. Statistical performances measures - models comparison, French Alternative Energies and Atomic Energy Commission. 2011.
- [38] Brownlee J. Machine learning mastery. 2019. https://machinelearningmastery.com/gradient-descent-for-machin-433 learning/.
- [39] Sayadi A, Monjezi M, Talebi N, Khandelwal MA. Comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak. J Rock Mech Geotech Eng 2013;5(4):318-24. https://doi.org/10.1016/j.jrmge.2013.05.007.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5982e9fe-61fc-43e4-be20-7f75cb3cb403