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Predicting Young's Modulus of Indian Coal Measure
Rock Using Multiple Regression and Artificial
Neutral Network
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Samir Kumar Pal a, Karanam Uma Maheshwar Rao c

a Indian Institute of Technology, Department of Mining Engineering, Kharagpur, India
b Techno Main Salt Lake, Department of Civil Engineering, Kolkata, India
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Abstract

Accurate information on Young's modulus (E ) is required for simulating rock deformation in mines; on the other
hand, it is very cumbersome to obtain in the laboratory and collecting drilled cores in sufficient amounts, especially in
the case of soft rocks, is quite impossible. Empirical equations were deducted for E from easily determinable rock
properties, and the final model was selected through different statistical strength parameter tests. The generalization of
the equation was verified through the normal distribution tests of residues of the equation. R2 came to be 0.609 and was
validated using an artificial neural network with an improved value of 0.73.

Keywords: sandstone, shale, multiple regression, outlier analysis, artificial neural network

1. Introduction

T he different aspects of rock engineering, like
the design and construction of tunnels, un-

derground structures, underground pillar stability
of mines, foundations on rocks, rock slope stability
etc., have two basic strength parameters to be
incorporated. The major strength parameters of the
rock are uniaxial compressive strength (UCS ) and
Young's modulus (E ). For RMR classification, the
only strength parameter to assess rock material
characteristics is UCS [1]. One of the main problems
for detecting UCS and Young's modulus from the
standard method is to use of sophisticated in-
struments and destruction methods [2]. Obtaining
drilled core insufficient amounts, especially in the
case of soft, fragile, or foliated rocks, is quite
impossible [3]. The knowledge of the in-situ stresses
is required for the quantification of fracture propa-
gation and fracture mapping in the rock mass.
Young's modulus is required as an input parameter
for numerical studies such as the finite element

method for the estimation of the in-situ stresses.
The numerical studies provide a more accurate
estimation of the in-situ stresses than the hydraulic
fracturing and flat jack method. These studies also
validate the measurements taken by hydraulic
fracturing and flat jack methods. It is also used in
other applications such as drilling and requires
avoiding the well bore instability problems. “These
parameters have great importance in rock physics
applications, viz., onshore and offshore geo-
mechanical engineering, tunnelling, dam design,
rock drilling and blasting, rock excavation and even
for slope stability” [4]. Many researchers have
introduced empirical equations derived through
either simple or multiple regression analysis to es-
timate the UCS of various rocks [5e13]. Different
studies have been performed using different rock
types and properties, leading to different empirical
relations for different rocks. Further multiple
regression techniques have been used for finding
UCS using at least two parameters [14e20]. Young's
modulus is essential for the estimation of the in-situ
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stresses. Prior knowledge of in-situ stresses is
required to design hydraulic fracturing. It is also
essential in oil and gas industry applications.
Moreover, fracture propagation and mapping are
strong functions of the values and directions of the
in-situ stresses [21]. Artificial neural networks and
multiple regressions have been used to predictUCS
for travertine sandstone samples [22e24]. Also, the
correlation of physicemechanical properties of rock
from seismic waves is investigated to predict UCS
and Young's modulus [25e27]. Some researchers
have worked on the statistical estimation of UCS
from Shore hardness using genetic expression pro-
gramming [28]. Sometimes, the machine stiffness
also comes into play, which leads to erroneous re-
sults of Young's modulus whilst measuring from the
laboratory machines [29e31]. It has been increas-
ingly common to develop alternatives that would
predict the elastic moduli of rocks using theoretical
and empirical approaches in order to get around the
challenges associated with measuring the elastic
characteristics of rocks through laboratory experi-
ments. These methods either correlate the elastic
and shear moduli to simple physical characteristics
like density, and indirect tensile strength, or other
mechanical characteristics like indices, or even to
the mineral constitution of the rocks [32].These
properties are determined in the laboratory or
documented in the literature. In the following
paper, multiple regressions have been used to form
an expression for Young's modulus using other
easily determinable physic mechanical properties of
rocks, viz. density, depth, uniaxial compressive
strength, and tensile strength. Trial equations were
carried out by running multiple regressions, and
a preferred equation containing all the parameters
was achieved with a fair coefficient of determination
(see Tables 6 and 7).

2. Materials and methods

The physico-mechanical properties of coal mea-
sure rocks were selected for an Indian coal mine.
Samples were collected from boreholes of the Sal-
anpur block in the Asansol region up to a maximum
depth of 440 m. Different coal measure rocks, such
as coarse-grained, medium-grained and fine-
grained sandstones, shale, carbonaceous shale,
sandy shale etc., were subjected to uniaxial
compression and indirect tensile tests. The samples
were prepared according to the ISRM norms. The
rate of stress was held constant at 0.5 MPa/s. The
cores were sawed cut into uniaxial and Brazilian test
samples according to ISRM norms. The cylindrical

samples were polished before testing. The samples
were air-dried to maintain the constant mass. For
UCS samples, different precautions weretaken. The
sides’ parallelism was verified, and both surface
roughness and perpendicularity stayed within tol-
erances of 0.01 rad and 0.02 mm, respectively. At
0.5 MPa/s, the loading rate is maintained constant
[33]. A total of 264 samples were prepared for the
present study. In this paper, the mechanical test of
rocks involves the determination of UCS. In this
investigation, a universal testing machine (UTM) of
INSTRON brand and SATEC series KN type was
employed. Every experiment was carried out at
room temperature [34].

2.1. Determination of compressive strength

UCS is the compressive stress at which the sample
fails were calculated using the following formula.
For the determination of uniaxial compression
strength, an INSTRON, SATEC series KN model,
universal testing machine (UTM), is used in this
study. All the experiments are performed at normal
room temperature. UCS is the compressive stress at
which the sample fails and is calculated using the
following formula:

UCS¼ Pmax�
pD2

1

� =4
ð1Þ

where, Pmax is the load at failure, and D1isthe
diameter of the sample.

2.2. Determination of indirect tensile strength

BTS of the sample is calculated by dividing the
maximum load carried by the sample during the test
by the contact area of the sample. BTS is calculated
as described below:

ITS¼2P0
max

pD1L
ð2Þ

where, Pmax is the load at failure during the test, D1

is the diameter of the sample, andLis axial length of
the sample.

Abbreviations

UCS uniaxial compressive strength
UTM universal testing machine
ITS indirect tensile strength
D depth
r density
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The experiments were carried out in INSTRON
of 3500 KN capacity in the Rock Mechanics Labo-
ratory of IIT, Kharagpur. The instrument is shown
in Fig. 1.

3. Results and discussion

The statistical relationship (particularly the mean
and variance) between a dependent variable as
a function of one or more independent (or control)
variables may be determined empirically through
regression analysis. Multiple linear regressions also
find many applications in engineering. It correlates
two or more independent (or control) variables with
a dependent variable. The equation comes in the
form:

E¼ðx1;x2;x3;x4Þ¼kþax1þbx2þ cx3þ dx4 ð3Þ

3.1. Multiple regression analysis

As increasing parameters strengthen the correla-
tion, multiple regression analysis is inevitable to
carry out with the study. The software SPSS 25 has
been used for this purpose. First, the histograms
(Fig. 2) of the data of the different parameters,
viz.UCS, ITS, density (r), and depth (D), are drawn to
depict the spatial distribution of the data about the
mean. All variables are quantitative and interval
types. There is also less co-linearity amongst each
other, i.e., the value of the Pearson coefficients is
less than 1 when each of UCS, ITS, depth and den-
sity are correlated [35]. The Pearson coefficient is the
standardized coefficient denoting the strength of the
statistical relationship between two parameters. It is
given by:

r¼ covðx;yÞ
ðN� 1Þsxsy ð4Þ

where covxy is the covariance of the data set, sx and
syare the standard deviations of each of the x and
y data sets, where x is the independent and y are the
dependent data set. In this study, the correlation
strength is determined by the coefficient of deter-
mination, i.e., the square of the Pearson coefficient
(R2). The primary assumptions of multiple re-
gressions are henceforth met for the above data.
Forty-two (42) trial equations are derived to obtain
a relatively coherent relation between Young's
modulus, E (dependent variable) and the predictors.
The log-transformed E is used for regression. In
general, multiple regression provides better results
if the variable data are normally distributed. In this
present case, the data of Young's modulus is not
normally distributed. So, to improve the result, the
log-transformed Young's modulus has been used.
The normality distribution is shown in Fig. 2. The
normal curve of log-transformed Young's modulus
is more uniformly distributed around the dataset
than the normal curve of Young's modulus data.
Different combinations of UCS, ITS, density, and
depth are used in the analysis to reach an equation
that would predict the value of Young's modulus
with the different types of physico-mechanical
properties of rock.
The general form of the linear equation comes to

be

E¼kþ aUCSþ bITSþ cDþ dr ð5Þ

where, a, b, c, d are the regression coefficients, E is
Young's modulus of the rock (in GPa), UCS is the
uniaxial compressive strength of the rock (in MPa),
ITS is the indirect tensile strength of the rock (in
MPa), r is the density of rock (in KN/m3), and D is
the depth of occurrence in m. Outlier analysis has
been done to avert the geological disturbances in
the lithology of the boreholes. The main aim of
finding the correlation of Young's modulus is to find
a simple equation to make it easy to handle for any
geotechnicians. So, different types of trial equations
have been used to find a suitable equation that
would be at par with the requirements for
a coherent equation. The models then underwent
different statistical parameters tests. Three types of
empirical equations are considered for the estima-
tion of Young's modulus. They are linear, log-linear
and mixed linear equations (i.e., logarithmic and
linear parameters). The equations are selected on
the basis of the highest value of the correlation

Fig. 1. Universal testing machine (Instron).
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coefficient that has been opted and also meets the
significant value criteria of 0.05 for all the co-
efficients of the regression equations, including the
constant is opted for the optimum equation. So,

both log-linear and mixed models were considered
in the cases. The models were then undergone
through different statistical strength parameters
tests. Different statistical measures have been

Fig. 2. Histogram of (a) depth, (b) density, (c) UCS, (d) ITS, (e) E and (f) LOE.
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implemented by researchers to compare a model
and observations. Some of them are:
a) fractional bias
b) geometric mean bias
c) the normalized mean square error (NMSE ).
d) the geometric variance (GV).
e) the coefficient correlation (R).
A perfect model would have MG, VG, R and

FAC2 ¼ 1.0, and FB and NMSE ¼ 0.0. FB and MG
measure systematic errors. NMSE is given by:

NMSE¼
�
Co �Cp

�2
CoCp

ð6Þ

FB is given by:

FB¼2�
�
Co �Cp

Co þCp

�
ð7Þ

MG is based on a logarithmic scale. It is given
by:

MG¼ eðln Co�ln CPÞ ð8Þ
Unpredictable fluctuations generally lead to

random errors leading to undesirable results. When
measurements are repeated, the arithmetic mean
comes out to be null, and the predicted values are
scattered against the true values. NMSE and VG are
both measures of systematic and random or un-
systematic errors [36,37].

VG¼ eðln Co�ln CpÞ2 ð9Þ
The parameter R represents the degree of co-

linearity between the parameters. Estimating the
statistical strength of an empirical relationship is
a required but not sufficient requirement.
The best regression equation in terms of the

highest R2 value, which is obtained in linear form, is

E¼ � 2:102þ 0:009Dþ 0:162rþ 0:133UCS� 0:098ITS

ð10Þ
The corresponding statistical parameters of the

linear regression equation are given in Table 1.
The observed and predicted values of Young'-

smodulus in the linear regression equation are
shown in Fig. 3.
The residuals are checked for their normal dis-

tribution by histograms. The histogram is shown in
Fig. 4.

The best regression equation in terms of the
highest R2 value which, is obtained in log-linear
form, is given by:

log10 E¼ � 1:31� 0:158 log10 Dþ 0:488 log10 r

þ 0:714 log10 UCS� 0:161 log10 ITS ð11Þ
Fig. 5 depicts the graph of the observed and

predicted value of E according to (11).
The statistical strength parameter table is given

below in Table 2.
The residuals are checked for their normal dis-

tribution by histograms. The histogram is shown in
Fig. 6.
The most suitable regression model having sec-

ond best R2 value that came out of the independent
parameters in the mixed regression form is

log10 E¼ � 0:369þ 0:203 log10 Dþ 0:006r� 0:05UCS

ð12Þ
The statistical strength parameter table is given

in Table 3.
Fig. 7 depicts the graph of the observed and pre-

dicted value of E according to (12).
The residuals are checked for their normal dis-

tribution by histograms. The histogram is shown in
Fig. 8.
Hence, the final equation stands to be.

log10 E¼ � 0:369þ 0:203 log10 Dþ 0:006r� 0:005UCS

ð13Þ

3.2. Validation of physico-mechanical properties
through the artificial neural network

The Widrow-Hoff learning type of Multilayer
Perceptrons (MLP) has been used, and it has con-
nections with adjoining layers. The hidden layers
are present between the input and output layers
only. This type of overall learning process of the
network is backpropagation algorithm which in-
volves the gradient descent method to identify the
modified weights corresponding to each hidden
input and output layer. The gradient descent
method is a type of optimization method which in-
volves the prediction of the minimum value of any
parameter under consideration (here, the weighted
values corresponding to the layers) to get to the

Table 1. Statistical parameters of the linear regression equation.

Correlation
coefficient (R)

Factor of
two (FAC2)

Geometric
variance (GV)

Geometrical
mean bias (MG)

Fractional
bias (FB)

Normalized mean
square error (NMSE )

Remarks

0.741 0.993554 1.000042 0.993554 1.006488 0.00524 Indicates perfect statistical
representation of the population
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desired prediction level as close as possible [38,39].
The analyses have been conducted in IBM SPSS 25.
The tables indicate the stepwise analysis of the data
and the activation functions used in the analysis.
The analysis has been done based on the MLP
theory of neural networks. The input activation
function here is used as a hyperbolic tangent, and
the identity function is used as the output activation
function. The outputs are as generated in IBM SPSS
25. Table 4indicates the general process of the
neural network. A total of 132 sample sets have been
used for the analysis by an artificial neural network,
as indicated in Table 4. About 72.7% of the samples

were taken as training data, whereas 27.3% were
taken as test data. No data were excluded for either
test or training sets. Table 4 shows the different
parameters and activation functions implemented in
the input and output layers. The independent vari-
ables were the components of the input layer. The
variables are depth of occurrence of the rock sam-
ples (D), the density of the rock samples (r), UCS
and ITS. The parameters are rescaled using the
standardized method. In the hidden layer, a hy-
perbolic tangent is used as the activation function.
One hidden layer is taken under consideration and
it consists of five units. The output layer consisted of

Fig. 3. Graph of the observed and predicted value of the linear equation.

Fig. 4. Histogram showing the normal distribution of the residuals of linear equation.
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Fig. 5. Graph of the observed and predicted value of logarithmic Young's modulus.

Table 2. Statistical strength parameter table of the logelinear equation.

Correlation
coefficient (R)

Factor of
two (FAC2)

Geometric
variance (GV)

Geometrical
mean bias (GM )

Fractional
bias (FB)

Normalized mean
square error (NMSE )

Remarks

0.743 1.064012 1.0066 1.0000 0.006627 0.00663 Indicates perfect
statistical representation
of the population

Fig. 6. Histogram showing the normal distribution of the logelinear equation.

Table 3. Statistical strength parameter table in the mixed regression equation.

Correlation
coefficient (R)

Factor of
two (FA2)

Geometric
variance (GV)

Geometrical
mean bias (MG)

Fractional
bias (FB)

Normalized mean
square error (NMSE )

Remarks

0.780 0.98000 0.980000 1.00000 0.0193 0.0004 Indicates perfect statistical
representation of the
population
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the dependent variable, i.e., logarithmic trans-
formed Young's modulus (LOE ), and hence it had
one unit. The identity function was taken as the
activation function in the output layer (see Table 5).
Fig. 9 shows the estimated neural network. The

input layer consists of four independent units along

with the bias, which generally acts as a constant for
the activation function. The hidden layer consisted
of five units which, along with the interaction of bias
and the activation functions, gives the dependent
variable as the predicted output.
Table 6 indicates the training process of the neural

network. The sum of the square errors in the training
set is high, whereas the relative error is low. On the
other hand, inthe testing set, the sum of the square
error is low, whereas the relative error is high.
Table 7 indicates the bias and weighted values of

different parameters. The values were calculated
using the activation function, along with the bias, in
the input layer, and values hence obtained were used
in the output activation layer, thereby giving the
output.

Fig. 7. Graph of the observed and predicted value of E.

Fig. 8. Histogram showing the normal distribution of the residual of mixed (log and linear) equation.

Table 4. General process of neural network.

Case processing summary

N Percent

Sample Training 96 72.7%
Testing 36 27.3%

Valid 132 100.0%
Excluded 0
Total 132
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Table 5. Different parameters and activation functions.

Network information

Input layer Covariates 1 D
2 r

3 UCS
4 ITS

Number of units 4
Rescaling method for covariates Standardized

Hidden layer(s) Number of hidden layers 1
Number of units in hidden layer 1a 5
Activation function Hyperbolic tangent

Output layer Dependent variables 1 LOE
Number of units 1
Rescaling method for scale dependents Standardized
Activation function Identity
Error function Sum of squares

a Excluding the bias unit.

Fig. 9. Estimated neural network.

Table 6. Training process of the neural network.

Model summary

Training Sum of squares error 12.316
Relative error 0.259
Stopping rule used 1 consecutive step(s) with no decrease in errors

Training time 0:00:00.01
Testing Sum of squares error 3.668

Relative error 0.402
Dependent variable: LOE
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Table 8 indicates the normalized importance value
of the variables. The importance is shown in the
form of a bar diagram in Fig. 10. UCS has the highest
contribution to the prediction model as it is directly
proportional to Young's modulus. The linear corre-
lation is also stronger for UCS and logarithmic
transformed Young's modulus indicating the higher

degree of contribution of UCS to the prediction
model.
The scattered plot of the predicted and observed

values of logarithmic Young's modulus is shown in
Fig. 11.
The scattered plot shows that the sample points

are equally dispersed along the normal line. That is,
the predicted values are at par with the observed
values of the dependent variables. The dispersion
of the residuals about the zero line is shown in
Fig. 12.
The symmetrical dispersion of the residuals along

the zero line of the residual indicates that the sum of
the squares of the errors nullifies each other to
become minimum for this particular neural network

Table 7. Bias and weighted values of different parameters.

Parameter estimates

Predictor Predicted
Hidden layer 1 Output layer
H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) logE

Input layer (Bias) �0.445 �1.412 0.504 0.826 �0.366
D �0.284 �0.260 �0.277 0.019 �0.377
r 0.589 �1.114 �0.058 0.052 �0.371
UCS �0.877 0.125 �0.457 �0.237 0.139
ITS 0.081 0.393 0.204 �0.594 0.013

Hidden layer (Bias) �0.362
H(1:1) �0.466
H(1:2) �1.589
H(1:3) �1.040
H(1:4) �0.735
H(1:5) 0.412

Table 8. Normalized importance value of the variables.

Independent variable importance

Importance Normalized importance

D 0.150 36.1%
r 0.317 76.1%
UCS 0.417 100.0%
ITS 0.116 27.8%

Fig. 10. Normalized importance percentage of the parameters.
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model. The correlation obtained from the multiple
regressions after being run through the learning
process of the artificial neural network obtained
better results which were evident from the
improvement of the coefficient of correlation R2

between the observed and the predicted value of

Young's modulus of intact rocks. The improvement
of the results through the artificial neural network
analysis leads to validating the obtained relation
through multiple regressions. The improved
R square value for the predicted logarithmic trans-
formed Young's modulus is shown in Fig. 13.

Fig. 11. Scattered plot of the predicted and observed values of logarithmic Young's modulus.

Fig. 12. Dispersion of the residuals about the zero line.
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The comparison of the different equations found
through multiple regression and artificial neural
network has been made on the same scale of sta-
tistical strength parameters and shown in the
following Table 9.
The first determining ratio showed two indeter-

minate values. Therefore, the ratio of correlation
coefficients (R) and NMSE has been used as the final
determining ratio for the best-fit regression equa-
tion. So, from this it has been found that ANN
modelling is the best model as compared to the
other statistical models such as linear, log linear, log
and linear.

4. Conclusions

� An attempt has been made to predict Young's
modulus using a functional relationship
between UCS, ITS, density, and depth of occur-
rence of rocks. The results which are obtained
are valid for the particular area of the borehole
only.

� The study shows that for fair prediction of
Young's modulus (E ) values, among the above
four parameters, a minimum of two parameters
are needed.

� Multiple regression was used to find a coherent
equation for the prediction of Young's modulus
in terms of density, depth of occurrence of rocks,
UCS and ITS. In addition to the coefficient of
correlation, the fractional bias (FB), geometric
variance (GV), normalized mean square error
(NMSE ) and the factor of predictions within
a factor of two of observations (FAC2) were the
major statistical performance tests that have also
been calculated to check the predictive perfor-
mance of the model.

� It is suggested that the empirical equations
developed using regression analysis in this
study give predicted values that are more or less
at par with the observed data of the borehole.
Further, the data were analyzed through the
artificial neural network method. There was
a slight improvement in theR2 value until 0.73.
For appropriate generalization of the equations
from the sample space over the whole popula-
tion, the residuals of each of the obtained
different types of equations have been checked
for the normal distribution. The normal distri-
bution of the residuals overgeneralizes the
equation from the given sample space to the
population.

Fig. 13. Scattered plot of the predicted value of the logarithmic Young's modulus and the observed Young's modulus with R2 value.

Table 9. Comparison of different equations found out by multiple regression and artificial neural networks.

Type of
statistical
modelling

Correlation
coeff. (R)

FAC2 GV MG FB NMSE Mean of
residuals

First
determining
ratio

Final
determining
ratio

Linear 0.741 0.993554 1.00004 0.9935 1.00649 0.00524 �0.07 �1981 141
Log linear 0.743 1.064012 1.0066 1.00 0.00627 0.00623 1.05 19,402 119
Log & Linear 0.780 0.980 0.980 1.00 0.0193 0.0004 �0.02 �4,851,762 1950
ANN 0.854 0.9972 1 1.002 0.00272 7.85 � 10�16 0.0 ∞ 1,087,898,089,171,970
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� It has also been concluded that anincrease in
statistical analysis, i.e., through multiple regres-
sion to ANN, improves the results and provides
more robustness to the equation. It can be
a useful tool for field engineers and geo-
technicians. Hence, with increasing the sophis-
tication of statistical analysis of the different
physico-mechanical properties of rocks, it was
found that there is a standard level of relation
between Young's modulus and the easily
measurable physicemechanical properties.
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