PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New PCA-based scheme for process fault detection and identification. Application to the Tennessee Eastman process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a new principal component analysis (PCA) scheme to perform fault detection and identification (FDI) for systems affected by process faults. In this scheme, a new modeling method which maximizes the model sensitivity to a certain process fault type is proposed. This method uses normal operating or known faulty data to build the PCA model and other faulty data to fix its structure. A new structuration method is proposed to identify the process fault. This method computes the common angles between the residual subspaces of the different modes. It generates a reduced set of detection indices that are sensitive to certain process faults and insensitive to others. The proposed FDI scheme is successfully applied to the Tenessee Eastman process (TEP) supposedly affected by several process faults.
Rocznik
Strony
art. no. e150812
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Higher Institute of Applied Science and Technology of Sousse (ISSATSo), University of Sousse, Tunisia
  • LARATSI, National Engineering School of Monastir (ENIM), University of Monastir, Tunisia
  • LAS2E, National Engineering School of Monastir (ENIM), University of Monastir, Tunisia
  • LAS2E, National Engineering School of Monastir (ENIM), University of Monastir, Tunisia
  • LARATSI, National Engineering School of Monastir (ENIM), University of Monastir, Tunisia
Bibliografia
  • [1] P. Bielenica, J. Widzinska, A. Łukaszewski, Ł. Nogal, and P. Łukaszewski, “Decentralized fault location, isolation and self restoration (flisr) logic implementation using iec 61850 goose signals,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 5, p. e143101, 2022.
  • [2] F. Pimentel Peres and F. Sanson Fogliatto, “Variable selection methods in multivariate statistical process control: A systematic literature review,” Comput. Ind. Eng., vol. 115, pp. 603–619, 2018, doi: 10.1016/j.cie.2017.12.006.
  • [3] M. Quinones-Grueiro, A. Prieto-Moreno, C. Verde, and O. Llanes-Santiago, “Data-driven monitoring of multimode continuous processes: A review,” Chemometrics Intell. Lab. Syst., vol. 189, pp. 56–71, 2019, doi: 10.1016/j.chemolab.2019.03.012.
  • [4] Y. Dong and S. Qin, “A novel dynamic pca algorithm for dynamic data modeling and process monitoring,” J. Process Control, vol. 67, pp. 1–11, 2018, doi: 10.1016/j.jprocont.2017. 05.002.
  • [5] W. Jakowluk and S. Jaszczak, “Cascade tanks system identification for robust predictive control,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143646, 2022.
  • [6] D. Garcia-Alvarez, M. Fuente, and G. Sainz, “Fault detection and isolation in transient states using principal component analysis,” J. Process Control, vol. 22, pp. 551–563, 2012, doi: 10.1016/j.jprocont.2012.01.007.
  • [7] W. Li, M. Peng, and Q. Wang, “Improved pca method for sensor fault detection and isolation in a nuclear power plant,” Nucl. Eng. Technol., vol. 51, pp. 146–154, 2019, doi: 10.1016/j.net.2018.08.020.
  • [8] L. Elshenawy and T. Mahmoud, “Fault diagnosis of time-varying processes using modified reconstruction-based contributions,” J. Process Control, vol. 70, pp. 12–23, 2018, doi: 10.1016/j.jprocont.2018.07.017.
  • [9] D. Garcia-Alvarez, A. Bregnon, B. Puildo, and A.-G. C.J., “Integrating pca and structural model decomposition to improve fault monitoring and diagnosis with varying operation points,” Eng. Appl. Artif. Intell., vol. 122, pp. 1–14, 2023, doi: 10.1016/j.engappai.2023.106145.
  • [10] H. Lahdhiri and O. Taouali, “Reduced rank kpca based on glrt chart for sensor fault detection in nonlinear chemical process,” Measurement, vol. 169, p. 108342, 2021, doi: 10.1016/j.measurement.2020.108342.
  • [11] B. Malluhi, H. Nounou, and M. Nounou, “Enhanced multiscale principal component analysis for improved sensor fault detection and isolation,” Sensors, vol. 22, p. 5564, 2022, doi: 10.3390/s22155564.
  • [12] J. Zhang, D. Zhou, and M. Chen, “Monitoring multimode processes: A modified pca algorithm with continual learning ability,” J. Process Control, vol. 103, pp. 76–86, 2021, doi: 10.1016/j.jprocont.2021.05.007.
  • [13] D. Jung and E. Frisk, “Residual selection for fault detection and isolation using convex optimization,” Automatica, vol. 97, pp. 143–149, 2018, doi: 10.1016/j.automatica.2018.08.006.
  • [14] J. Wang, W. Ge, J. Zhou, H. Wu, and Q. Jin, “Fault isolation based on residual evaluation and contribution analysis,” J. Frankl. Inst., vol. 354, pp. 2591–2612, 2017, doi: 10.1016/j.jfranklin.2016.09.002.
  • [15] M. Harkat, M. Mansouri, M. Nounou, and H. Nounou, “Fault detection of uncertain nonlinear process using interval-valued data-driven approach,” Chem. Eng. Sci., vol. 205, pp. 36–45, 2019, doi: 10.1016/j.ces.2018.11.063.
  • [16] H. Zhao, J. Liu, W. Dong, X. Sun, and Y. Ji, “An improved casebased reasoning method and its application on fault diagnosis of tennessee eastman process,” Neurocomputing, vol. 219, pp. 39–49, 2017, doi: 10.1016/j.neucom.2016.09.014.
  • [17] I. Jolliffe, Principal component analysis. New York: Springer-Verlag, 2003.
  • [18] S. Qin and R. Dunia, “Determining the number of principal components for best reconstruction,” J. Process Control, vol. 10, pp. 245–250, 2000.
  • [19] M. Guerfel, “Systems diagnosis via data analysis and without behavior model a priori,” Ph.D. dissertation, National Engineering School of Tunis, Tunisia, 2012.
  • [20] J. Gertler and J. Cao, “Design of optimal structured residuals from partial principal component models for fault diagnosis in linear systems,” J. Process Control, vol. 15, pp. 585–603, 2005, doi: 10.1016/j.jprocont.2004.10.005.
  • [21] X. Xu, L. Xie, and S. Wang, “Multimode process monitoring with pca mixture model,” Comput. Electr. Eng., vol. 40, pp. 2101–2112, 2014, doi: 10.1016/j.compeleceng.2014.08.002.
  • [22] C. Zhao, W. Wang, Y. Qin, and F. Gao, “Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitoring,” Ind. Eng. Chem. Res., vol. 54, pp. 3154–3166, 2015, doi: 10.1021/ie504380c.
  • [23] M. Harkat, M. Mansouri, M. Nounou, and H. Nounou, “Enhanced data validation strategy of air quality monitoring network,” Environ. Res., vol. 160, pp. 183–194, 2018, doi: 10.1016/j.envres.2017.09.023.
  • [24] Y. Huang, J. Gertler, and T. McAvoy, “Sensor and actuator fault isolation by structured partial pca with nonlinear extensions,” J. Process Control, vol. 10, pp. 459–469, 2000, doi: 10.1016/S0959-1524(00)00021-4.
  • [25] G. Golub and C. Van Loan, Matrix Computations. Baltimore, Maryland: Johns Hopkins University Press, 2013.
  • [26] A. Bathelt, N. Ricker, and M. Jelali, “Revision of the tennessee eastman process model,” IFAC-PapersOnLine, vol. 48, pp. 309–314, 2015, doi: 10.1016/j.ifacol.2015.08.199.
  • [27] C. Reinartz, M. Kulahci, and O. Ravn, “An extended tennessee eastman simulation dataset for fault-detection and decision support systems,” Comput. Chem. Eng., vol. 149, p. 107281, 2021, doi: 10.1016/j.compchemeng.2021.107281.
  • [28] S. Yin, S. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study of basic data-driven fault diagnosis and proces monitoring methods on the benchmark tennessee eastman process,” J. Process Control, vol. 22, pp. 1567–1581, 2012, doi: 10.1016/j.jprocont.2012.06.009.
  • [29] N. Ricker, “Decentralized control of the tennessee eastman challenge process,” J. Process Control, vol. 4, pp. 205–221, 1996, doi: 10.1016/0959-1524(96)00031-5.
  • [30] N. Ricker, “Tennessee eastman challenge archive,” 2023, available at https://depts.washington.edu/control/LARRY/TE/download.html.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-598260a0-27d9-4b0a-acaf-81657db35fe1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.