PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Incompressible SPH Model for Simulating Violent Free-Surface Fluid Flows

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the problem of transient gravitational wave propagation in a viscous incompressible fluid is considered, with a focus on flows with fast-moving free surfaces. The governing equations of the problem are solved by the smoothed particle hydrodynamics method (SPH). In order to impose the incompressibility constraint on the fluid motion, the so-called projection method is applied in which the discrete SPH equations are integrated in time by using a fractional-step technique. Numerical performance of the proposed model has been assessed by comparing its results with experimental data and with results obtained by a standard (weakly compressible) version of the SPH approach. For this purpose, a plane dam-break flow problem is simulated, in order to investigate the formation and propagation of a wave generated by a sudden collapse of a water column initially contained in a rectangular tank, as well as the impact of such a wave on a rigid vertical wall. The results of simulations show the evolution of the free surface of water, the variation of velocity and pressure fields in the fluid, and the time history of pressures exerted by an impacting wave on a wall.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences, ul. Koscierska 7, 80-328 Gdansk, Poland
Bibliografia
  • Antoci C., Gallati M. and Sibilla S. (2007) Numerical simulation of fluid-structure interaction by SPH, Comput. Struct., 85 (11-14), 879-890, DOI: 10.1016/j.compstruc.2007.01.002.
  • Belytschko T., Krongauz Y., Dolbow J. and Gerlach C. (1998) On the completeness of meshfree particle methods, Inter. J. Numer. Meth. Eng., 43 (5), 785-819, DOI: 10.1002/(SICI)1097-0207(19981115) 43:5.
  • Belytschko T., Krongauz Y., Organ D., Fleming M. and Krysl P. (1996) Meshless methods: An overview and recent developments, Comput. Meth. Appl. Mech. Eng., 139 (1-4), 3-47.
  • Braess H. andWriggers P. (2000), Arbitrary Lagrangian Eulerian finite element analysis of free surface flows, Comput. Meth. Appl. Mech. Eng., 190 (1-2), 95-109.
  • Chang T. J., Kao H. M., Chang K. H. and Hsu M. H. (2011) Numerical simulation of shallow-water dam break in open channels using smoothed particle hydrodynamics, J. Hydrol., 408 (1-2), 78-90, DOI: 10.1016/j.hydrol.2011.07.023.
  • Chorin A. j. (1968) Numerical solution of the Navier-Stokes equations, Math. Comput., 22 (104), 745-762.
  • Colagrossi A. and Landrini M. (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys., 191 (2), 448-475, DOI: 10.1016/S0021-9991(03)00324-3.
  • Cummins S. J. and Rudman M. (1999) An SPH projection method, J. Comput. Phys., 152 (2), 584-607, DOI: 10.1016/jcph1999.6246.
  • Cummins S. J., Silvester T. B. and Cleary P. W. (2012) Three-dimensional wave impact on a rigid structure using smoothed particle hydrodynamics, Int. J. Numer. Meth. Fluids, 68 (12), 1471-1496, DOI: 10.1016/fld.2539.
  • Dalrymple R. A. and Rogers B. D. (2006) Numerical modeling of water waves with the SPH method, Coastal Eng., 53 (2-3), 141-147, DOI: 10.1016/j.coastaleng.2005.10.004.
  • Gingold R. A. and Monaghan J. J. (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389.
  • Gómez-Gesteira M., Cerqueiro D., Crespo C. and Dalrymple R. A. (2005) Green water overtopping analyzed with a SPH method, Ocean Eng., 32 (2), 223-238, DOI: 10.1016/j.oceaneng.2004.08.003.
  • Harlow F. H. (2004) Fluid dynamics in Group T-3 Los Alamos National Laboratory (LA-UR-03-3852), J. Comput. Phys., 195 (2), 414-433, DOI: 10.1016/jcph2003.09.030.
  • Harlow F. H. and Welch J. E. (1965) Numericl calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8 (12), 2182-2189.
  • Hu X. Y. and Adams N. A. (2007) An incompressible multi-phase SPH method, J. Comput. Phys., 227 (1), 264-278, DOI: 10.1016/j.jcp2007.07.013.
  • Johnson G. R., Stryk R. A. and Beissel S. R. (1996) SPH for high velocity impact computations, Comput. Appl. Mech. Eng., 139 (1-4), 347-373.
  • Li S. and Liu W. K. (2004) Meshfree Particle Methods, Springer, Berlin.
  • Lo E. Y. M. and Shao S. (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method, Appl. Ocean Res., 24 (5), 275-286, DOI: 10.1016/S0141-1187(03)00002-6.
  • Lucy L. B. (1977) A numerical approach to the testing of the fission hypothesis, Astron. J., 82 (12), 1013-1024.
  • Martin J. C. and MoyceW. J. (1952) An experimental study of the collapse of liquid columns on a rigid horizontal plane, Phil. Trans. R. Soc. Lond. A 244 (882), 312-324.
  • Monaghan J. J. (1992) Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543-574, DOI: 10.1146/annurev.aa.30.090192.002551.
  • Monaghan J. J. (1996) Gravity currents and solitary waves, Physica D, 98 (2-4), 523-533
  • Quecedo M., Pastor M., Herreros M. I., Fern´andez Merodo J. A. and Zhang Q. (2005) Comparison of two mathematical models for solving the dam break problem using the FEM method, Comput. Meth. Appl. Mech. Eng., 194 (36-38), 3984-4005, DOI: 10.1146/j.cma.2004.08.011.
  • Rabier S. and Medale M. (2003) Computation of free surface flows with a projection FEM in a moving mesh framework, Comput. Meth. Appl. Mech. Eng., 192 (41-42), 4703-4721.
  • Radovitzky R. and Ortiz M. (1998) Lagrangian finite element analysis of Newtonian viscous flow, Int. J. Numer. Meth. Eng., 43 (4), 608-619.
  • Rafiee A., Cummins S., Rudman M. and Thiagarajan K. (2012) Comparative study on the accuracy and stability of SPH schemes in simulating energetic free-surface flows, Eur. J. Mech. B/Fluids, 36 (1-16), DOI: 10.1146/j.euromechflu.2012.05.001.
  • Ramaswamy B. and Kawahara M. (1987) Lagrangian finite element analysis applied to viscous free surface flow, Int. J. Numer. Meth. Fluids, 7 (9), 953-984.
  • Randles P.W. and Libersky L. D. (1996) Smoothed Particle Hydrodynamics. Some recent improvements and applications, Comput. Meth. Appl. Mech. Eng., 139 (1-4), 375-408.
  • Shao S. (2006) Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling, Int. J. Numer. Meth. Fluids, 50 (5), 597-621, DOI: 10.1002/fld.1068.
  • Shao S. (2010) Incompressible SPH flow model for wave interactions with porous media, Coastal Eng., 57 (3), 304-316, DOI: 10.1016/j.coastaleng.2009.10.012.
  • Shao S. and Lo E.Y. M. (2003) Incompressible SPH for simulatingNewtonian and non-Newtonian flows with a free surface, Adv. Water Resour., 26 (7), 787-800, DOI: 10.1016/S0309-1708(03)0030-7
  • Souli M. and Zolesio J. P. (2001) Arbitrary Lagrangian-Eulerian and free surface methods in fluid mechanics, Comput. Meth. Appl. Mech. Eng., 191 (3-5), 451-466.
  • Staroszczyk R. (2007) A Lagrangian finite element treatment of transient gravitational waves in compressible viscous fluids, Arch. Hydro-Eng. Environ. Mech., 54 (4), 261-284.
  • Staroszczyk R. (2009) A Lagrangian finite element analysis of gravity waves in water of variable depth, Arch. Hydro-Eng. Environ. Mech., 56 (1-2), 43-61.
  • Staroszczyk R. (2010) Simulation of dam-break flow by a corrected smoothed particle hydrodynamics method, Arch. Hydro-Eng. Environ. Mech., 57 (1), 61-79.
  • Staroszczyk R. (2011) Simulation of solitary waves mechanics by a corrected smoothed particle hydrodynamics method, Arch. Hydro-Eng. Environ. Mech., 58 (1-4), 23-45, DOI: 10.2478/ v10203-011-0002-9.
  • Szydłowski M. and Zima P. (2006) Two-dimensional vertical Reynolds-averaged Navier-Stokes equations versus one-dimensional Saint-Venant model for rapidly varied open channel water flow modelling, Arch. Hydro-Eng. Environ. Mech., 53 (4), 295-309.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-597aef4e-e6f6-4f1f-a6ff-599331587e9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.