PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication and Characteristics of Cast Aluminium – Mineral Particles Composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of research on the production of cast composites based on aluminum alloys with a mineral filler with a porous structure. AlSi12 silumin and AlSi12 silumin with the addition of 3% magnesium (AlSi12-Mg3) were used as the matrix material, while particles of natural zeolite, expanded perlite and expanded clay with a size of 4 to 6 mm were used as the mineral filler. In order to increase the efficiency of the production process, the mineral particles have been covered with a sodium silicon solution with the addition of silicon powder. The coated particles were then heated at 400 °C for 1 hour to remove moisture from them. The prepared mineral particles were then placed inside a casting mold and flooded with liquid alloy at a temperature of 790 °C. The obtained composites were subjected to macroscopic observations and analysis using computed tomography (CT). Phase analysis was also performed to determine the phase composition of the obtained composites. In order to determine the mechanical and physical properties, the obtained composites were subjected to compressive strength tests and density measurements. As a result of the research, it was found that the use of the AlSi12-Mg3 alloy and coating in the form of a solution of sodium silicate and silicon powder allows for the most effective production of composites. The low density of the produced composites, combined with their favorable structure and strength properties, suggest the possibility of use as light products transferring compressive stresses, as well as energy-absorbing products.
Słowa kluczowe
Twórcy
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • 1. Maroti J. E., Orbulov I. N. Characteristics compressive properties of AlSi7Mg matrix syntactic foams reinforced by Al2O3 or SiC particles in the matrix, Mater. Sci. Eng. A., 2023, 869, 144817. https://doi. org/10.1016/j.msea.2023.144817.
  • 2. Rajak D.K., Mahajan N.N., Linul E. Crashworthi- ness performance and microstructural characteristics of foam filled thin-walled tubes under diverse strain rate, J. Alloys Compd., 2019, 775, 675–689. https://doi.org/10.1016/J.JALLCOM.2018.10.160.
  • 3. Song J., Xu S., Xu L., Zhou J., Zou M. Experimental study on the crashworthiness of bio-inspired aluminum foam filled tubes under axial compression loading, Thin-Walled Struct., 2020, 155, 106937. https://doi.org/10.1016/j.tws.2020.106937.
  • 4. Alteneiji M., Krishman K., Guan Z.W., Cantwell W.J., Zhao Y., Langdon G. Dynamic response of aluminum matrix syntactic foams subjected to high strain- rate loadings, Compos. Struct., 2023, 303, 116289. https://doi.org/10.1016/J. COMPSTRUCT.2022.116289.
  • 5. Thalmaier G., Sechel N.A., Csapai A., Popa C.O.,Batin G., Gabora A. Aluminum perlite syntactic foams, Materials, 2022, 15, 5446. https://doi. org/10.3390/ma15155446.
  • 6. Jung J., Kim S.H., Kang J.H., Park J., Kim W.K., Lim C.Y. Compressive strength modeling and validation of cenosphere-reinforced aluminum- magnesium matrix based syntactic foams, Mater. Sci. Eng. A., 2022, 143452. https://doi.org/10.1016/j.msea.2022.143452.
  • 7. Linul E., Lell D., Movahedi N., Codrean C., Fiedler T. Compressive properties of zinc syntactic foams at elevated temperatures, Compos. B Eng., 2018, 167, 122–134. https://doi.org/10.1016/j. compositesb.2018.12.019.
  • 8. Kemeny A., Katona B., Movahedi N., Fiedler T. Fatigue tests of zinc aluminum matrix syntactic foams filled with expanded pearlite, IOP Conf. Ser. Mater. Sci. Eng., 2020, 903, 012050. DOI 10.1088/1757-899X/903/1/012050.
  • 9. Castro G., Nutt S.R. Synthesis of syntactic steel foam using gravity-fed infiltration, Mater. Sci. Ebg A., 2012, 553, 89–95. https://doi.org/10.1016/j. msea.2012.05.097.
  • 10. Mandal D.P., Majumdar D.D., Bharti R.K., Majumdar J.D. Microstructural characterization and property evaluation of titanium cenosphere syntactic foam developed by powder metallurgy route. Powder Metall., 2015, 58, 289–299. https://doi.org /10.1179/1743290115Y.0000000012.
  • 11. Pan L., Rao D., Yang Y., Qiu J., Sun J., Gupta N. Gravity casting of aluminum - Al2O3 hollow sphere syntactic foams for improved compressive properties. J. Porous Mater., 2020, 27, 1127–1137. https:// doi.org/10.1007/s10934-020-00889-x.
  • 12. Anbuchezhiyan G., Mohan B., Sathianarayanan D., Muthuramalingam T. Synthesis and characterization of hollow glass microspheres reinforced magnesium alloy matrix syntactic foam. J. Alloys Compd., 2017, 719, 125–132. https://doi.org/10.1016/j. jallcom.2017.05.153.
  • 13. Vendra L.J., Nexille B., Rabiei A. Fatigue in aluminum- steel and steel-steel composite foams. Mater. Sci. Eng. A., 2009, 517, 146–153. https://doi. org/10.1016/j.msea.2009.03.075.
  • 14. Wiener C., Chmelik F., Ugi D., Mathis K., Knapek M. Damage characterization during compression in a perlite-aluminum syntactic foam. Materials, 2019, 12. https://doi.org/10.3390/ma12203342.
  • 15. Wright A., Kennedy A. The processing and properties of syntactic Al foams containing low cost expanded glass particles. Adv. Eng. Mater., 2017, 19, 1–6. https://doi.org/10.1002/adem.201600467.
  • 16. Puga H., Carneiro V.H., Jesus C., Pereira J., Lopes V. Influence of particle diameter in mechanical performance of Al expanded clay syntactic foams. Compos. Struct., 2018, 184, 698–703. https://doi. org/10.1016/j.compstruct.2017.10.040.
  • 17. Su M., Wang H., Hao H. Compressive properties of aluminum matrix syntactic foams prepared by stir casting method. Adv. Eng. Mater., 2019, 1900183. https://doi.org/10.1002/adem.201900183.
  • 18. Huang W., Liu G., Li H., Wang F., Jurczyk M. Compressive properties and failure mechanisms of gradient aluminum foams prepared by a powder metallurgy method. Metals., 2021, 11(9), 1337. https:// doi.org/10.3390/met11091337.
  • 19. Sahu S., Ansari M.Z., Mondal D.P., Cho C. Quasistatic behavior of aluminum cenosphere syntactic foams. Mater. Sci. Technol., 2019, 35, 7. https://doi. org/10.1080/02670836.2019.1593670.
  • 20. Qu H., Rao D., Cui J., Gupta N., Wang H., Chen Y., Li A., Pan. L. Mg-matrix syntactic foam filled with alumina hollow spheres coated by MgO synthesized with solution coating- sintering. J. Mater. Res. Technol., 2023, 24, 2357–2371. https://doi. org/10.1016/j.jmrt.2023.03.160.
  • 21. Władysiak R., Kozuń A., Dębkowska K., Pacyniak T. Analysis of crystallization process of intensive cooled AlSi20CuNiCoMg., Arch. Foundry Eng., 2017, 2, 137–144. https:/doi: 10.1515/ afe-2017-0065.
  • 22. Borowiecka- Jamorezk J., Kargul M. Effect of zeolite addition on the production of a cast porous composite based on AC-AlSi11 silumin. Arch. Foundry Eng., 2022, 4, 96–101. 10.24425/afe.2022.143956.
  • 23. Taherishargh M., Linul E. Broxtermann S., Fiedler T. The mechanical properties of expanded perlitealuminum syntactic foam at elevated temperatures. J. Alloys Compd., 2018, 737, 590–596. https://doi. org/10.1016/j.jallcom.2017.12.083.
  • 24. Kemeny A., Leveles B., Karoly D. Functional aluminum matrix syntactic foams filled with leight weight expanded clay aggregate particles. Mater. Today Proc., 2021, 45, 4229–4232. https://doi. org/10.1016/j.matpr.2020.12.164.
  • 25. Qu H., Rao D., Cui J., Gupta N., Wang H., Chen Y., Pan. L. Mg alloy syntactic foams filled with MgO coated Al2O3 hollow spheres: microstructure and mechanical properties. Res Sq., 2022, https://dx.doi. org/10.2139/ssrn.4229761
  • 26. Orbulov I.N., Szlancsik A., Kemeny A., Kinces D. Low-cost light-weight composite metal foams for transportation applications, J. of Materi Eng and Perform, 2022, 6954–6961. https://doi.org/10.1007/ s11665-022-06644-4
  • 27. Sánchez de la Muela, A.M., García Cambronero, L.E., Malheiros, L.F., Ruiz-Román, J.M. New Aluminum Syntactic Foam: Synthesis and Mechanical Characterization, Materials, 2022, 15, 5320. https:// doi.org/10.3390/ma15155320.
  • 28. Movahedi N., Murch G.E., Belova I.V., Fiedler T. Functionally graded metal syntactic foam: fabrication and mechanical properties, Mater. Des., 2019, 168, 107652. https://doi.org/10.1016/j. matdes.2019.107652.
  • 29. Majlinger K., Orbulov I.N. Characteristic compressive properties of hybrid metal matrix syntactic foams, Mater. Sci. Eng. A., 2014, 606, 248–256. https://doi.org/10.1016/j.msea.2014.03.100.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59770874-9e99-4c7e-869f-a4459bcfaa01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.