PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using GIS to detect spatial inequality in primary schools in Ain Touta

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The economic and social changes in Algerian society at the end of the 1980s and the beginning of the 1990s had a radical impact on the urban and regional dynamics and on population growth (besides rural migration) in the regional and urban networks, including cities like Ain Touta, which is considered the most prominent urban agglomeration in the region. Ain Touta was unable to keep up with development challenges, which has led to a deterioration of its education system and other public services. Moreover, the decision-makers of none of these sectors use modern technologies such as geographic information systems (GIS), spatial decision support systems (SDSS), smart cities, and E-government, which would enable them understanding the current issues from a geographical perspective, especially through measuring spatial inequality access to education services. This paper uses a GIS approach to identify spatial inequality in primary schools and measure the distribution pattern using the nearest neighbour average method, vector distribution, hotspot, and service area analyses. These analyses can be help creating a functional access and disability map to improve the local school map. The results obtained confirm the basic hypothesis, as it was found that the northern area of the city, which is the area were the immigrant population resides, is the least accessible to educational institutions. In consequence, other parts of the city have to bear the burden of supporting the northern area, and thus themselves become under-resourced.
Rocznik
Tom
Strony
27--39
Opis fizyczny
Bibliogr. 39 poz., il.
Twórcy
Bibliografia
  • Abraha A.T. 2019. Analyzing spatial and non-spatial factors that influence educational quality of primary schools in emerging regions of Ethiopia: Evidence from geospatial analysis and administrative time series data. Journal of Geography and Regional Planning, 12(1), 10–19. https://doi.org/10.5897/JGRP2018.0705.
  • Akakba A., Lahmar B. 2020. The use of geocoding for home healthcare application and management an epidemic situation: Case of Covid-19 virus outbreak. Geographica Pannonica, 24(4), 285–293. https://doi.org/10.5937/gp24-28062.
  • AlQuhtani S. 2022. Spatial distribution of public elementary schools: a case study of Najran, Saudi Arabia. Journal of Asian Architecture and Building Engineering, 1–21. https://doi.org/10.1080/13467581.2022.2049277.
  • Badland H., Pearce J. 2019. Liveable for whom? Prospects of urban liveability to address health inequities. Social Science & Medicine, 232, 94–105. https://doi.org/10.1016/j.socscimed.2019.05.001.
  • Baser V. 2020. Effectiveness of School Site Decisions on Land Use Policy in the Planning Process. ISPRS International Journal of Geo-Information, 9(11), 662. https://doi.org/10.3390/ijgi9110662.
  • Böhme J., Flasche V. 2017. Spatial Traces of Pedagogical Constructions of Meaning Over the Course of Urban Change. In: Education, Space and Urban Planning: Education as a Component of the City. Springer, 49–65.
  • Chavare S., Ubale P. 2013. Application of Geoinformatics in Urban Planning and Management. Indian Streams Research Journal, 3, 3.
  • Chen X., Jia P. 2019. A comparative analysis of accessibility measures by the two-step floating catchment area (2SFCA) method. International Journal of Geographical Information Science, 33(9), 1739–1758. https://doi.org/10.1080/13658816.2019.1591415.
  • Cordes J., Castro M.C. 2020. Spatial analysis of Covid-19 clusters and contextual factors in New York City. Spatial and Spatio-temporal Epidemiology, 34, 100355. https://doi.org/10.1016/j.sste.2020.100355.
  • Coutinho-Rodrigues J., Simão A., Antunes C.H. 2011. A GIS-based multicriteria spatial decision support system for planning urban infrastructures. Decision Support Systems, 51(3), 720–726.
  • Cova T.J. 1999. GIS in emergency management. Geographical Information Systems, 2(12).
  • DPSB 2017. Monograhie de Batna. Rapport. Direction de la programmation et du suivi budgétaires Batna.
  • Ekpoh U. 2018. School Mapping and Facility Planning. 59–82.
  • ESRI. 2019. How Average Nearest Neighbor works. http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/h-how-average-nearest-neighbor-distance-spatial-st.htm [accessed: 28 February 2019].
  • Garnick D.W. et al. 1987. Appropriate measures of hospital market areas. Health Services Research, 22(1), 69.
  • Gunes A.E., Kovel J.P. 2000. Using GIS in emergency management operations. Journal of Urban Planning and Development, 126(3), 136–149.
  • Higgs G. 2004. A Literature Review of the Use of GIS-Based Measures of Access to Health Care Services. Health Services and Outcomes Research Methodology, 5(2), 119–139. https://doi.org/10.1007/s10742-005-4304-7.
  • How Directional Distribution (Standard Deviational Ellipse) works ‒ ArcGIS Pro Documentation. 2022. https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-statistics/h-howdirectional-distribution-standard-deviationa.htm [accessed: 15 August 2022].
  • Jażdżewska I.A., Lechowski Ł., Babuca D. 2022. GIS-Based Approach for the Analysis of Geographical Education Paths. ISPRS International Journal of Geo-Information, 11(1), 41. https://doi.org/10.3390/ijgi11010041.
  • Johnson R. 2000. GIS technology for disasters and emergency management.
  • Kaczmarek S. 2019. Ruining, demolition and regeneration in urban space: Sketching the research problem. Geographia Polonia [Preprint]. https://www.geographiapolonica.pl/article/item/11703.html [accessed: 1 August 2019].
  • Kiani B. et al. 2018. Comparing potential spatial access with self-ed travel times and cost analysis to haemodialysis facilities in North-eastern Iran. Geospatial Health, 13(2). https://doi.org/10.4081/gh.2018.703.
  • La Direction Technique Chargée des Statistiques Régionales, l’Agriculture et de la C. 2008. Collections Statistiques 163/2011, Série S: Statistiques Sociales Armature Urbaine – RGPH. 2008. Office National des Statistiques. http://www.ons.dz/IMG/pdf/armature_urbaine_2008.pdf.
  • Makropoulos C., Butler D., Maksimovic C. 2003. Fuzzy logic spatial decision support system for urban water management. Journal of Water Resources Planning and Management, 129(1), 69–77.
  • Mashrur R. et al. 2015. A GIS Based Integrated Approach to Measure the Spatial Equity of Community Facilities of Bangladesh. AIMS Geosciences, 1(1), 21–40. https://doi.org/10.3934/geosci.2015.1.21.
  • Million A., Heinrich A.J., Coelen T. 2016. Education, Space and Urban Planning: Education as a Component of the City. Springer.
  • Murad A. 2018. Planning and location of health care services in Jeddah City, Saudi Arabia: Discussion of the constructive use of geographical information systems. Geospatial Health, 13(2). https://doi.org/10.4081/gh.2018.728.
  • Murad A.A., Dalhat A.I., Naji A.A. 2020. Using Geographical Information System for Mapping Public Schools Distribution in Jeddah City. International Journal of Advanced Computer Science and Applications (IJACSA), 11(5). https://doi.org/10.14569/IJACSA.2020.0110513.
  • Ngigi M., Musiega D., Mulefu F. 2012. Planning and Analysis of Educational Facilities using GIS: A Case Study of Busia County, Kenya.
  • Office N. des S. 2011. Armature Urbain. Collections Statistiques N: 163/2011 Série S: Statistiques Sociales. La Direction Technique Chargée des Statistiques Régionales, l’Agriculture et de la Cartographie. http://www.ons.dz/IMG/pdf/armature_urbaine_2008.pdf [accessed: 1 January 2018].
  • Rimba A.B. et al. 2017. Physical flood vulnerability mapping applying geospatial techniques in Okazaki City, Aichi Prefecture, Japan. Urban Science, 1(1), 7.
  • Schneider P.J., Schauer B.A. 2006. HAZUS – its development and its future. Natural Hazards Review, 7(2), 40–44.
  • Shekhar S., Xiong H. 2017. Encyclopedia of GIS Second Edition. Springer Science & Business Media. https://doi.org/10.1007/978-3-319-17885-1
  • Siddayao G.P., Valdez S.E., Fernandez P.L. 2014. Analytic hierarchy process (AHP) in spatial modeling for floodplain risk assessment. International Journal of Machine Learning and Computing, 4(5), 450.
  • Tadili J., Fasly H. 2019. Citizen participation in smart cities: a survey. Proceedings of the 4th International Conference on Smart City Applications. New York, NY, USA. Association for Computing Machinery (SCA’19), 1–6. https://doi.org/10.1145/3368756.3368976.
  • Thomas Coelen A.J.H., Million A. 2017. Common Points Between Urban Development and Education. In: Education, Space and Urban Planning: Education as a Component of the City. Springer, 18–32.
  • Ubogu D.R.E. 2020. Politics of School Mapping and Facilities Provision in Tertiary Institutions in Delta State, Nigeria, 2(1), 10.
  • UNDP. 2018. Sustainable Development Goals. Rapport. United nation development program. http://www.undp.org/content/undp/en/home/sustainable-development-goals.html
  • UNESCO. 2009. Education Indicators Technical Guidelines. UNESCO Institute for Statistics. http://uis.unesco.org/sites/default/files/documents/education-indicators-technical-guidelines-en_0.pdf
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59756348-3713-4fcc-9516-acdaceeeb72c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.