PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recruitment patterns of the solitary ascidian Phallusia nigra Savigny, 1816 on artificial substrates submerged in the central Red Sea, Saudi Arabia

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The solitary ascidian Phallusia nigra is commonly found on hard substrates along the Jeddah coastal waters of the central Red Sea. In this study, the recruitment pattern of P. nigra on artificial substrates was assessed in relation to their type, surface color and orientation. The results showed a higher recruitment rate of the ascidian species on concrete and dark panels. The abundance of the ascidian on test panels varied between the four seasons. The orientation (vertical or horizontal) of the panels did not show any major difference in the recruitment. Significant effects of light intensityon the recruitment of P. nigra were observed on test panels, with higher abundance on panels submerged in the shade. In conclusion, this study clearly indicates the importance of the type and color of substrates in the recruitment of ascidians on artificial materials.
Słowa kluczowe
Rocznik
Strony
262--269
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
  • King Abdulaziz University, Faculty of Marine Sciences, Department of Marine Biology, 80207 Jeddah, Saudi Arabia
  • King Abdulaziz University, Faculty of Marine Sciences, Department of Marine Biology, 80207 Jeddah, Saudi Arabia
Bibliografia
  • [1]. Azevedo, F.B.B., Carloni, G.G. & Carvalheira, L.V. (2006). Colonization of benthic organisms on different artificial substratum in Ilha Grande bay, Rio de Janeiro, Brazil.Braz. Arch. Biol. Technol 49: 263-275.
  • [2]. Baynes, T.W. (1999). Factors structuring a subtidal encrusting community in the southern Gulf of California. Bull. Mar. Sci 64: 419-450.
  • [3]. Bullard, S.G., Lambert, G., Carman, M.R., Byrnes, J., Whitlatch, R.B. et al. (2007). The colonial ascidian Didemnum sp. A: current distribution, basic biology and potential threat to marine communities of the northeast and west coasts of North America. J. Exp. Mar. Biol. Ecol 342: 99-108.
  • [4]. Bullard, S.G., Davis, C.V. & Shumway, S.E. (2013). Seasonal patterns of ascidian settlement at an aquaculture facility in the Damariscotta River, Maine. J. Shellfish. Res 32(2): 255-264.
  • [5]. Bulleri, F. & Chapman, M.G. (2010). The introduction of coastal infrastructure as a driver of change in marine environments. J. Appl. Ecol 47(1): 26-35.
  • [6]. Chase, A.L., Dijkstra, J.A. & Harris, L.G. (2016). The influence of substrate material on ascidian larval settlement. Mar. Pollut. Bull 106(1-2): 35-42.
  • [7]. Darbyson, E., Locke, A., Hanson, J.M. & Willison, J.M. (2009). Marine boating habits and the potential for spread of invasive species in the Gulf of St. Lawrence. Aquat. Invasions4(1): 87-94.
  • [8]. De Felice, R.C., Eldredge, L.G. & Carlton, J.T. (2001). Nonindigenous marine invertebrates. In L.G. Eldredge & C. Smith (Eds.), A Guidebook of Introduced Marine Species in Hawaii (pp. bi-bvi). Honolulu: Bishop Museum Technical Report.
  • [9]. Dean, T.A. (1981). Structure aspects of sessile invertebrates as organizing forces in an estuarine fouling community. J. Exp. Mar. Biol. Ecol 53: 163-180.
  • [10]. Dobretsov, S., Abed, R.M. & Voolstra, C.R. (2013). The effect of surface colour on the formation of marine micro and macrofouling communities. Biofouling 29(6): 617-627.
  • [11]. Ells, V., Filip, N., Bishop, C.D., DeMont, M.E., Smith-Palmer, T. et al. (2016). A true test of colour effects on marine invertebrate larval settlement. J. Exp. Mar. Biol. Ecol 483: 156-161.
  • [12]. Glasby, T.M. (2000). Surface composition and orientation interact to affect subtidal epibiota. J. Exp. Mar. Biol. Ecol 248: 177-190.
  • [13]. Glasby, T.M. & Connell, S.D. (2001). Orientation and position of substrata have large effects on epibiotic assemblages. Mar. Ecol. Prog. Ser 214: 127-135.
  • [14]. Holmstrom, C. & Kjelleberg, S. (1994). The effect of external biological factors on settlement of marine invertebrate and new antifouling technology.Biofouling8(2): 147-160.
  • [15]. Kim, I.H., Cruz-Rivera, E., Sherif, M.E.D. & El-Sahhar, S. (2016). Cyclopoid copepods (Ascidicolidae, Notodelphyidae) associated with Phallusia nigra Savigny, 1816 (Ascidiacea) in the Red Sea: a new ascidicolid and first descriptions of the males from two notodelphyids. J. Crustac. Biol 36(4): 553-566.
  • [16]. Knott, N.A., Underwood, A.J., Chapman, M.G. & Glasby, T.M. (2004). Epibiota on vertical and horizontal surfaces on natural reefs and on artificial structures. J. Mar. Biol. Ass. UK 84: 1117-1130.
  • [17]. Kondilatos, G., Corsini-Foka, M. & Pancucci-Papadopoulou, M.A. (2010). Occurrence of the first non-indigenous ascidian Phallusia nigra Savigny, 1816 (Tunicata: Ascidiacea) in Greek waters. Aquat. Invasions 5(2): 181-184.
  • [18]. Lambert, G. (2002). Nonindigenous ascidians in tropical waters. Pacific. Sci 56: 291-298.
  • [19]. Lopez-Legentil, S., Ruchty, M., Domenech, A. & Turon, X. (2005). Life cycles and growth rates of two morphotypes of Cystodytes (Ascidiacea) in the western Mediterranean. Mar. Ecol. Prog. Ser 296: 219-228.
  • [20]. Marins, F.O., Novaes, R.L., Rocha, R.M. & Junqueira, A.O. (2010). Non indigenous ascidians in port and natural environments in a tropical Brazilian bay. Zoologia 27(2): 213-221.
  • [21]. Miller, R.J. & Etter, R.J. (2008). Shading facilitates sessile invertebrate dominance in the rocky subtidal Gulf of Maine.Ecology89: 452-462.
  • [22]. Mizrahi, D., Navarrete, S.A. & Flores, A.A. (2014). Uneven abundance of the invasive sun coral over habitat patches of different orientation: An outcome of larval or later benthic processes? J. Exp. Mar. Biol. Ecol452: 22-30.
  • [23]. Novak, L., Lopez-Legentil, S., Sieradzki, E. & Shenkar, N. (2017). Rapid establishment of the non-indigenous ascidian Styela plicata and its associated bacteria in marinas and fishing harbors along the Mediterranean coast of Israel. Mediterr. Mar. Sci 18(2): 324-331. DOI:10.12681/mms.2135.
  • [24]. Oren, U. & Benayahu, Y. (1998). Didemnid ascidians: rapid colonizers of artificial reefs in Eilat (Red Sea). Bull. Mar. Sci63(1): 199-206.
  • [25]. Pineda, J., Porri, F., Starczak, V. & Blythe, J. (2010). Causes of decoupling between larval supply and settlement and consequences for understanding recruitment and population connectivity. J. Exp. Mar. Biol. Ecol 392: 9-21.
  • [26]. Rodriguez, S.R., Ojeda, F.P. & Inestrosa, N.C. (1993). Settlement of benthic marine invertebrates.Mar. Ecol. Prog. Ser97(2): 193-207.
  • [27]. Salama, A.J., Satheesh, S. & Balqadi, A.A. (2018a). Biofouling community development on nylon net panels submerged in the central Red Sea coast, Saudi Arabia. Cah. Biol. Mar 59: 517-525.
  • [28]. Salama, A.J., Satheesh, S. & Balqadi, A.A. (2018b). Development of Biofouling Communities on Nylon Net Panels Submerged in the Central Red Sea: Effects of Season and Depth. Thalassas 34(1): 199-208.
  • [29]. Satheesh, S. & Wesley, S.G. (2008). Seasonal variability in the recruitment of macrofouling community in Kudankulam waters, east coast of India. Estuar. Coast. Shelf. S 79(3): 518-524.
  • [30]. Satheesh, S. & Wesley, S.G. (2010). Influence of substratum colour on the recruitment of macrofouling communities. J. Mar. Biol. Ass. UK 90(5): 941-946.
  • [31]. Satheesh, S. & Wesley, S.G. (2011). Influence of submersion season on the development of test panel biofouling communities in a tropical coast. Estuar. Coast. Shelf. S 94(2): 155-163.
  • [32]. Shenkar, N., Zeldman, Y. & Loya, Y. (2008). Ascidian recruitment patterns on an artificial reef in Eilat (Red Sea). Biofouling 24(2): 119-128.
  • [33]. Shenkar, N. (2012). Ascidian (Chordata, Ascidiacea) diversity in the Red Sea. Marine Biodiversity 42: 459-469.
  • [34]. Siddik, A.A., Al-Sofyani, A.A., Ba-Akdah, M.A. & Satheesh, S. (2018). Invertebrate recruitment on artificial substrates in the Red Sea: role of substrate type and orientation. J. Mar. Biol. Ass. UK
  • [35]. Sokołowski, A., Ziółkowska, M., Balazy, P., Kukliński, P. & Plichta, I. (2017). Seasonal and multi-annual patterns of colonisation and growth of sessile benthic fauna on artificial substrates in the brackish low-diversity system of the Baltic Sea. Hydrobiologia 790: 183-200.
  • [36]. Swain, G., Herpe, S., Ralston, E. & Tribou, M. (2006). Short-term testing of antifouling surfaces: the importance of colour. Biofouling 22: 425-429.
  • [37]. Swami, B.S. & Chhapgar, B.F. (2002). Settlement pattern of ascidians in harbour waters of Mumbai, west coast of India Indian J. Mar. Sci 31(3): 207-212.
  • [38]. Tracy, B.M., Larson, K.J., Ashton, G.V., Lambert, G., Chang, A.L. et al. (2017). Northward range expansion of three non-native ascidians on the west coast of North America. BioInvasions Rec 6(3): 203-209.
  • [39]. Valdez, B., Ramirez, J., Eliezer, A., Schorr, M., Ramos, R. et al. (2016). Corrosion assessment of infrastructure assets in coastal seas. J. Mar. Eng. Technol 15(3): 124-134.
  • [40]. Van Duyl, F.C., Bak, R.P.M. & Sybesma, J. (1981). The ecology of the tropical compound ascidian Trididemnum solidum I. Reproductive strategy and larval behaviour. Mar. Ecol. Prog. Ser 35-42.
  • [41]. Van Dolah, R.F., Wendt, P.H., Knott, D.M. & Wenner, E.L. (1988). Recruitment and community development of sessile fouling assemblages on the continental shelf off South Carolina, USA. Estuar. Coast. Shelf. S26(6): 679-699.
  • [42]. Vandepas, L.E., Oliveira, L.M., Lee, S.S.C., Hirose, E., Rocha, R.M. et al. (2015). Biogeography of Phallusia nigra is it really black and white? Biol. Bull 228: 52-64.
  • [43]. Walker, S.J., Schlacher, T.A. & Schlacher-Hoenlinger, M.A. (2007). Spatial heterogeneity of epibenthos on artificial reefs: fouling communities in the early stages of colonization on an East Australian shipwreck. Marine Ecology 28: 435-445.
  • [44]. Whalan, S., Wahab, M.A.A., Sprungala, S., Poole, A.J. & De Nys, R. (2015). Larval settlement: the role of surface topography for sessile coral reef invertebrates. PloS one 10: e0117675.
  • [45]. Young, C.M. & Chia, F.S. (1984). Microhabitat-associated variability in survival and growth of subtidal solitary ascidians during the first 21 days after settlement. Mar. Biol81(1): 61-68.
  • [46]. Zhan, A., Briski, E., Bock, D.G., Ghabooli, S. & MacIsaac, H.J. (2015). Ascidians as models for studying invasion success. Mar. Biol 162: 2449-2470.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59752d95-2ae2-4bf4-8092-36fb548ef3bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.