Identyfikatory
Warianty tytułu
Synteza zeolitów z popiołów lotnych w ujęciu statystycznym
Języki publikacji
Abstrakty
The experimental conversion of F-class fly ash into zeolites is described. The ash, composed mainly of aluminosilicate glass, mullite and quartz, was collected in the Cracow power plant (southern Poland). The experiments involved the heating of fly ash samples in PTFE vessels. Time, temperature and solution composition were the reaction parameters considered in the experiments and in the subsequent modeling. A series of reactions with 0.5, 3 and 5M NaOH solutions (and some with additional 3M NaCl) were carried out at 70°, 100° and 150°C for 12-48 hours under autogenic pressure (not measured) and at a constant ash-to-solution ratio of 33.3 g/l. The following zeolite phases were synthesized: sodalite (SOD structure), hydroxysodalite (SOD), CAN type phases, Na-X (FAU), and NaP1 (GIS). Statistically calculated relationships based on the mineral- and chemical compositions of the reaction products support the conclusion that the type of zeolite phase that crystallizes depends on the concentration of OH- and Cl- in solution and on the temperature of the reaction. The duration of reaction, if on the order of tens of hours, is of less significance. The nature of the zeolite phase that crystalises is controlled by the intensity and selectivity of the substrate dissolution. That dissolution can favour, in sequence, one or other of the components in the substrate, resulting in Si/Al variation in the reaction solutions. Mullite dissolution (decreasing solution Si/Al) characterizes the most advanced reaction stages. The sequence of crystallization of the zeolite phases mirrors the sequential dissolution of substrate components, and the composition of the crystallizing zeolite crystals reflects the changes in the solution Si/Al.
Niniejsza praca prezentuje syntezę zeolitów z popiołów lotnych. Popiół lotny –uboczny produkt spalania węgla kamiennego – został pobrany w Elektrociepłowni Kraków. Składa się on głównie ze szkliwa glinokrzemiankowego, mullitu i kwarcu. Podczas eksperymentów przowadzonych przy użyciu autoklawu z pojemnikami z PTFE testowano efektywność reakcji w szerokim zakresie warunków hydrotermalnych. Synteza zeolitów polegała na reakcji popiołu z roztworem NaOH (0,5-, 3- lub 5-molowym) z dodatkiem 3-molowego roztworu NaCl, w temperaturze 70 , 100 lub 150 C, przez 12 i 24 godziny, w stosunku popiołu do roztworu 33,3 g/L. Sodalit (struktura typu SOD), hydroksysodalit (SOD), fazy typu CAN, Na-X (FAU) i NaP1 (GIS) były strukturami zeolitowymi zidentyfikowanymi w produktach reakcji. Na podstawie szczegółowej analizy statystycznej ilościowych wyników eksperymentów i parametrów reakcji stwierdzono, że typ krystalizującego zeolitu zależy przede wszystkim od stężenia anionów OH– i Cl– w roztworze reakcyjnym oraz od temperatury reakcji. Czas trwania reakcji, jeżeli rozpatrywany jest w rzędzie wielkości kilkudziesięciu godzin, ma zdecydowanie mniejsze znaczenie. Rodzaj zeolitu krystalizującego z popiołów lotnych jest kontrolowany przez kolejność i intensywność rozpuszczania składników mineralnych popiołu. Różna kolejność rozpuszczania substratów glinokrzemianowych powoduje zmianę stosunku Si/Al w rozworze reakcyjnym, wraz z czasem reakcji. Mullit jest najbardziej odpornym składnikiem popiołu i jego rozpuszczanie, zachodzące przy najbardziej agresywnych warunkach, powoduje obniżenie stosunku Si/Alwroztworze. Sekwencja krystalizacji zeolitów w czasie reakcji odzwierciedla różne tempo rozpuszczania składników popiołów w czasie, a ewolucja składu chemicznego kryształów zeolitów jest skutkiem zmian stosunku Si/Al w roztworze reakcyjnym.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
47--69
Opis fizyczny
Bibliogr. [41] poz., rys., tab., wykr.
Twórcy
autor
- Institute of Geological Sciences, Polish Academy of Sciences, Senacka 1, 31-002 Kraków, Poland
autor
- Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
Bibliografia
- AMRHEIN CH., HAGINA G.H., KIM T.S., MOSHER P.A., GAGAJENA R.C., AMANIOS T., TORRE DE LA L., 1996: Synthesis and properties of zeolites from fly ash. Environmental Science and Technology 30, 735-742.10.1021/es940482c
- ARMSTRONG J.A., DANN S.E., 2000: Investigation of zeolite scales formed in the Bayer process. Microporous Mesoporous Materials 41, 89-97.10.1016/S1387-1811(00)00276-6
- BAERLOCHER CH., MEIER W.M., OLSON D.H., 2001: Atlas of zeolite framework types. Str. Comm. IZA. 5th Revised Edition, Elsevier, London Boston Singapore Sydney Toronto Wellington.10.1016/B978-044450701-3/50351-7
- BERKGAUT V., SINGER A., 1996: High capacity cation exchanger by hydrothermal zeolitization of coal fly ash. Applied Clay Science 10, 369-378.10.1016/0169-1317(95)00033-X
- BRECK D.W., 1974: Zeolite molecular sieves. Structure, chemistry, and use. John Wiley & Sons, New York-London-Sydney-Toronto.
- CHANG H.L., SHIH W.H., 1998: A general method for the conversion of fly ash into zeolites as ion exchangers for cesium. Ind. Eng. Chem. Res. 37, 71-78.10.1021/ie970362o
- CHRISTIDIS G.E., PASPALIARIS I., KONSTANTOPOULOS A., 1999: Zeolitisation of perlite fines: mineralogical characteristics of the end products and mobilization of chemical elements. Applied Clay Science 15, 305-324.10.1016/S0169-1317(99)00007-1
- COCKS P.A., POPE CH.G., 1995: Salt effects on the synthesis of some aluminous zeolites. Zeolites, 15, 701-707.10.1016/0144-2449(95)00076-1
- DERKOWSKI A., 2001: Różnorodne metody syntezy zeolitów z popiołów lotnych jako próba utylizacji odpadów paleniskowych. (Various methods of synthesis of zeolites from fly ash as an attempt of utilization of post-combustion wastes. In Polish). Przegląd Geologiczny 49, 337-338
- DERKOWSKI A., 2002a: Microwave oven in synthesis of Na-zeolites from fly ash. Preliminary results. Mineralogia Polonica 33 (1), 81-95
- DERKOWSKI A., 2002b: Experimental transformation of volcanic glass from Streda nad Bodrogom (SE Slovakia). Geologica Carpatica. 53, special issue CD
- DONAHOE R.J., LIOU J.G., 1985: An experimental study on the process of zeolite formation. Geochimica and Cosmochimica Acta 49, 2349-2360.10.1016/0016-7037(85)90235-2
- ERMOSHIN V.A., SMIRNOV K.S., BOUGEARD D., 1997: Ab initio study of the initial steps of hydrothermal zeolite synthesis and of sol-gel processes. Journal of Molecular Structure (Theochem) 393, 171-176.10.1016/S0166-1280(96)04986-X
- FIORE S., HUERTAS F.J., HUERTAS F., LINARES J., 2001: Smectite formation in ryolitic obsidian as inferred by microscopic (SEM-TEM-AEM) investigation. Clay Minerals 36, 489-500.10.1180/0009855013640004
- HARI BABU E., UPADHYA Y.D., UPADHYAY S.N., 1993: Removal of phenols from effluents by fly ash. International Journal of Environmental Studies 43, 169-176.10.1080/00207239308710824
- HOLLMAN G.C., STEENBRUGGEN G., JANSSEN-JURKOVICOVA M., 1999: A two-step process for the synthesis of zeolites from coal fly ash. Fuel 78, 1225-1230.10.1016/S0016-2361(99)00030-7
- KAWANO M., TOMITA K., 1997: Experimental study on the formation of zeolites from obsidian by interaction with NaOH and KOH solutions at 150 and 200°C. Clays and Clay Minerals 45, 365-377.10.1346/CCMN.1997.0450307
- KOLAY P.K., SINGH D.N., 2002: Characterization of an alkali activated lagoon ash and its application for heavy metal retention. Fuel 81, 483-489.10.1016/S0016-2361(01)00119-3
- LECHERT H., 1996: The mechanism of faujasite growth studied by crystallization kinetics. Zeolites 17, 473-482.10.1016/S0144-2449(96)00041-3
- LINDNER T., LECHERT H., 1996: Chelate ligands as mineralizing agents in hydrothermal synthesis of faujasite-type zeolites: A kinetic study. Zeolites 16, 196-206.10.1016/0144-2449(95)00121-2
- ŁOMNICKI A., 2000: Wprowadzenie do statystyki dla przyrodników. (Introduction to statistics for nature researchers. In Polish). Wyd. 2. Wydawnictwo Naukowe PWN, Warszawa
- MA W.P., BROWN P.W., KOMARNENI S., 1998: Characterization and cation exchange properties of zeolite synthesized from fly ashes. Journal of Materials Research 13, 3-7.10.1557/JMR.1998.0001
- MANZ O.E., 1999: Coal fly ash: a retrospective and future look. Fuel 78, 133-136.10.1016/S0016-2361(98)00148-3
- MICHALIK M., WILCZYŃSKA-MICHALIK W., 1998: Synteza zeolitów z popiołów lotnych wytwarzanych w elektrowniach jako próba rozszerzenia możliwości utylizacji odpadów. (The synthesis of zeolites from electricity fly ash as an attempt of broadening of wastes utilization possibilities. In Polish). Przegląd Geologiczny 46, 421-425
- MURAYAMA N., YAMAMOTO H., SHIBATA J., 2002: Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. International Journal of Mineral Processing 64, 1-17.10.1016/S0301-7516(01)00046-1
- OELKERS E.H., 2001: General kinetic description of multioxide silicate mineral and glass dissolution. Geochimica and Cosmochimica Acta 65, 3703-3719.10.1016/S0016-7037(01)00710-4
- POOLE C., PRIJATAMA H., RICE N.M., 2000: Synthesis of zeolite adsorbents by hydrothermal treatment of PFA wastes: a comparative study. Minerals Engineering 13, 831-842.10.1016/S0892-6875(00)00072-8
- QUERALT I., QUEROL X., LOPEZ-SOLER A., PLANA F., 1997: Use of coal fly ash for ceramics: a case study for a large Spanish power station. Fuel 76, 787-791.10.1016/S0016-2361(97)00024-0
- QUEROL X., ALASTUEY A., FERNANDEZ-TURIEL J.L., LOPEZ-SOLER A., 1995: Synthesis of zeolites by alkaline activation of ferro-aluminous fly ash. Fuel 74, 1226-1231.10.1016/0016-2361(95)00044-6
- QUEROL X., MORENO N., UMANA J.C., ALASTUEY A., HERNANDEZ E., LÓPEZ-SOLER A., PLANA F., 2002: Synthesis of zeolites from coal fly ash: an overview. International Journal of Coal Geology 50, 413-423.10.1016/S0166-5162(02)00124-6
- QUEROL X., PLANA F., ALASTUEY A., LOPEZ-SOLER A., 1997: Synthesis of Na-zeolites from fly ash. Fuel 76, 793-799.10.1016/S0016-2361(96)00188-3
- RATAJCZAK T., GAWEŁ A., GÓRNIAK K., MUSZYŃSKI M., SZYDŁAK T., WYSZOMIRSKI P., 1999: Charakterystyka popiołów lotnych ze spalania niektórych węgli kamiennych i brunatnych. (The characteristic of fly ashes after combustion of some of the brown and black coals. In Polish). Polskie Towarzystwo Mineralogiczne - Prace Specjalne 13, 11-34
- SARBAK Z., KRAMER-WACHOWIAK M., 1998: Structural, thermal and adsorption properties of chemically modified fly ash. Hungarian Journal of Industral Chemistry 26, 101-104
- SARBAK Z., KRAMER-WACHOWIAK M., 2002: Porous structure of waste fly ashes and their chemical modifications. Powder Technology 123, 53-58.10.1016/S0032-5910(01)00431-4
- SHIH W.H., CHANG H.L., 1996: Conversion of fly ash into zeolites for ion-exchange applications. Materials Letters 28, 263-268.10.1016/0167-577X(96)00064-X
- TATLIER M., ERDEM-ŞENATALAR A., 1998: Fractal dimension as a tool to guide zeolite synthesis. Chaos, Solitons and Fractals 9, 1803-1812.10.1016/S0960-0779(98)00004-6
- TREACY M.M.J., HIGGINS J.B., 2001: Collection of simulated XRD powder patterns for zeolites. Str. Comm. IZA. 5th Revised Edition, Elsevier, London Boston Singapore Sydney Toronto Wellington
- TYSON R., 1997: Scientists link coal fly ash disposal to amphibian abnormalities. Environmental Science and Technology 31, 408.10.1021/es972465421650383
- WILCZYŃSKA-MICHALIK W., MICHALIK M., 1996: Charakterystyka morfologiczna i chemiczna produktów spalania paliw stałych. (The morphological and chemical characteristic of solid fuels combustion products. In Polish). Aura 6, 5-6
- WIRSCHING U., 1981: Experiments on the hydrothermal formation of calcium zeolites. Clays Clay Minerals 29, 171-183.10.1346/CCMN.1981.0290302
- YAN J., NERETNIEKS I., 1995: Is the glass phase dissolution rate always a limiting factor in the leaching processes of combustion residues? Science of Total Environment 172, 95-118.10.1016/0048-9697(95)04727-1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5975220a-bc2c-4951-a031-76d65d93351a