Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In order to assess the tolerance of the highly invasive weed Fallopia japonica to heavy metals, a greenhouse experiment was conducted in which this plant was cultivated in control soil and in the soils polluted by different levels of Cd, Cr, Cu, Pb and Zn. The content of heavy metals in soil did not eliminate the F. japonica rhizome’s capacity to regenerate. However, at the beginning of the experiment, the presence of some metal doses: Cd (100, 200 mg•kg-1), Pb (200 mg•kg-1) and Zn (300 mg•kg-1) delayed the rhizome regeneration compared to the control plants. In the soils contaminated with any level of Cr or Pb, shoots grew with similar vigour to the control plants. Only the high doses of Cd (100, 200 mg•kg-1), Cu (300 mg•kg-1) and Zn (300 mg•kg-1) significantly delayed the plants’ growth. The morphological features of F. japonica from the soils polluted with Cr and Pb were not significantly different from the control plants. Among the tested heavy metals that had the greatest impact on the morphology of F. japonica were Cd (100, 200 mg•kg-1), Cu (300 mg•kg-1) and Zn (300 mg•kg-1). A chemical analysis indicated that this weed accumulated large quantities of metals when cultivated in the contaminated soil. Particular attention was paid to its relatively high Cd uptake. In the variant where a dose of 100 mg Cd•kg-1 was applied, the plants (aboveground part) accumulated more than 630 times the amount of cadmium found in the control. The abilities of F. japonica to regenerate from rhizome fragments, to grow and develop under the stress conditions created by heavy metals, and to take up metals are evidence that this plant is characterised by metal tolerance.
Czasopismo
Rocznik
Tom
Strony
81--91
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
Bibliografia
- 1. Alvarez S., Berla B.M., Sheffield J., Cahoon R.E., Jez J.M. & Hicks L.M. 2009. Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics, 9, 2419–2431.
- 2. Anderson & Hayley. 2012. Invasive Japanese Knotweed (Fallopia japonica (Houtt.)). Best Management Practices in Ontario. Ontario Invasive Plant Council, Peterborough, ON.[online].https://www.ontarioinvasiveplants.ca/wpcontent/uploads/2016/06/OIPC_BMP_JapaneseKnotweed.pdf (accessed: 11.05.2020).
- 3. Bailey J.P. 2003. Japanese Knotweeds s.l. at home and abroad. In: Child, J. H. Brock, G. Brundu, K. Prach, P. Pyšek, P.M. Wade, M. Williamson (eds.), Plant Invasions: Ecological Threats and Management Solutions, Backhuys Publishers, Leiden: 183–196.
- 4. Bailey J.P., Bimová K., Mandák B. 2008. Asexual spread versus sexual reproduction and evolution in Japanese Knotweed s.l. sets the stage of “Battle of the Clones”. Biological Invasions, 11, 1189–1203.
- 5. Benyó D., Horváth E., Németh E., Leviczky T., Takács K., Lehotai N., Feigl G., Kolbert Z., Ördög A., Gallé R., Csiszár J., Szabados L. & Erdei L. 2016. Physiological and molecular responses to heavy metal stresses suggest different detoxification mechanism of Populus deltoides and P. × canadensis. Journal of Plant Physiology, 201, 62–70.
- 6. Böhmoá P. & Šoltes R. 2017. Accumulation of selected element deposition in the organs of Fallopia japonica during ontogeny. Oecologia Montana, 26, 35–46.
- 7. Bradley B.A., Blumenthal D.M., Wilcove D.S. & Ziska L.H. 2010. Predicting plant invasions in an era of global change. Trends in Ecology and Evolution, 25, 310–318.
- 8. Brej T. & Fabiszewski J. 2006. Plants accumulating heavy metals in the Sudety Mts. Acta Societatis Botanicorum Poloniae, 75, 61–68.
- 9. CABI. 2000. Invasive Species Compedium, Fallopia japonica (Japaneses Knotweed). [online]. https://www.cabi.org/isc/datasheet/23875 (accessed: 11.05.2020).
- 10. Chmura D., Nejfeld P., Borowska M., Woźniak G., Nowak T. & Tokarska-Guzik B. 2013. The importance of land use type in Fallopia (Reynoutria) japonica invasion in the suburban environment. Polish Journal of Ecology, 61, 379–384.
- 11. Ellstrand N.C., Schierenbeck K.A. 2000. Hybridization as a stimulus for the evolution of invasiveness in plants? Proc. Natl. Acad. Sci. USA, 97 (13), 7043–7050.
- 12. Fennell M., Wade M. & Bacon K. L. 2018. Japanese knotweed (Fallopia japonica): an analysis of capacity to cause structural damage (compared to other plants) and typical rhizome extension. [online]. Website https://peerj.com/articles/5246/ (17.08.2019).
- 13. Gulezian P.Z., Ison J.L. & Granberg K.J. 2012. Establishment of an invasive plant species (Conium maculatum) in contaminated roadside soil in Cook County, Illinois. The American Midland Naturalist, 168, 375–395.
- 14. Kicińska A. 2020. Lead and Zinc in Soils Around a Zinc-Works – Presence, Mobility and Environmental Risk. Journal of Ecological Engineering, 21(4), 185–198.
- 15. Mandák B., Bímová K., Pyšek P., Štěpánek J. & Plačková I. 2005. Isoenzyme diversity in Reynoutria (Polygonaceae) taxa: escape from sterility by hybridization. Plant Systematics and Evolution, 253, 219–230.
- 16. Mateos-Naranjo E., Andrades-Moreno L. & Redondo-Gomez S. 2011. Comparison of germination, growth, photosynthetic responses and metal uptake between three populations of Spartina densiflora under different soil pollution conditions. Ecotoxicology and Environmental Safety, 74, 2040–2049.
- 17. Michalet S., Rouifed S., Pellassa-Simon T., FusadeBoyer M., Meiffren G., Nazaret S., Piola F. 2017. Tolerance of Japanese knotweed s.l. to soilartificial polymetallic pollution: early metabolic responses and performance during vegetative multiplication. Environ. Sci. Pollut. Res. Int., 24 (26), 20897–20907.
- 18. Nagajyoti P.C., Lee K.D. & Sreekanth T.V.M. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8, 199–216.
- 19. Nentwig W., Bacher S., Kumschick S., Pyšek P. & Vilà M. 2018. More than“100 worst”alien speciesin Europe. Biological Invasions, 20, 1611–1621, DOI: 10.1007/s10530–017–1651–6.
- 20. Vilá M., Corbin J.D., Dukes J.S., Pino J. & Stanley S.D. 2007. Linking plant invasion to global environmental change. In: Canadell J.G, Pataki D.E, Pitelka F.L. (editors). Terrestrial Ecosystems in a Changing World.
- 21. Vuković N., Šegota V., Alegro A., Koletić N., Rimac A. and Dekanić S. 2019. “Flying under the radar” – how misleading distributional data led to wrong appreciation of knotweeds invasion (Reynoutria spp.) in Croatia. Bio. Invasions Records, 8 (1), 175–189.
- 22. Pauková Ž. 2019. Occurrence and Spread after 18 Years of Invasion by Fallopia × bohemica (Slovakia). Journal of Ecological Engineering, 20 (3), 85–90.
- 23. Punz W.F. & Sieghardt H. 1993. The response of roots of herbaceous plant species to heavy metals. Environmental Botany, 33, 85–98.
- 24. Radojevic M. and Bashkin V.N. 2006. Practical Environmental Analysis. 2nd ed. United Kingdom, RSC Publishing.
- 25. Rahmonov O., Czylok A., Orczewska A., Majgier L. & Parusel T. 2014. Chemical composition of the leaves of Reynoutria japonica Houtt. and soil features in polluted areas. Central Europea Journal of Biology, 9, 320–330.
- 26. Rahmonov O., Banaszek B., Pukowiec-Kurda K. 2019. Relationships Between Heavy Metal Concentrations in Japanese Knotweed (Reynoutria Japonica Houtt.) Tissues and Soil in Urban Parks in Southern Poland. IOP Conf. Series: Earth and Environmental Science 221 012145 IOP. doi:10.1088/1755–1315/221/1/012145.
- 27. Sharma G.P., Singh J.S. & Raghubanshi A.S. 2005. Plant invasion: emerging trends and future implications. Current Science, 88, 726–734.
- 28. Shaw A. J. 1989. Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRP Press INC, Floryda, The United States, CRP Press INC.
- 29. Sołtysiak J., Berchová-Bímová K., Vach M., Brej T. 2011. Heavy metals content in the Fallopia genus in central European Cities – study from Wroclaw and Prague. Acta Botanica Silesiaca, 7, 209–218.
- 30. Sołtysiak J. and Brej T. 2014. Invasion of Fallopia genus plants in urban environment on the example of Wrocław city. Polish Journal of Environmental Studies, 23, 449–458.
- 31. Sołtysiak J. and Brej T. 2019. Effect of soil artificially polluted with lead on an invasive Fallopia × bohemica: a case study from Central Europe. Polish Journal of Environmental Studies, 28, 1–9.
- 32. Tokarska-Guzik B., Dajdok Z., Zając M., Zając A., Urbisz A., Danielewicz W., Hołdyński C., 2012. Rośliny obcego pochodzenia w Polsce ze szczególnym uwzględnieniem gatunków inwazyjnych. Generalna Dyrekcja Ochrony Środowiska, Warszawa [in Polish].
- 33. Tokarska-Guzik B., Fojcik B., Bzdęga K., Urbisz A., Nowak T., Pasierbiński A., Dajdok Z. 2017. Inwazyjne gatunki z rodzaju Reynouria spp. w Poslce – biologia, ekologia i metody zwalczania. Wydawnictwo Uniwersytetu Śląskiego w Katowicach [in Polish].
- 34. Wani S.H., Fazlioglu F., Bonseri S .P. 2019. Competitiveness of generalist plant populations at a mine site. Turkish Journal of Botany, 43 (2), 218–231.
- 35. Zhang Qian, Yang Ruyi, Tang Jianjun & Chen Xin. 2008. Competitive interaction between the invasive Solidago canadensis and native Kummerowia striata in lead contaminated soil. Botanical Studiem, 49, 385–391.
- 36. Yang Ru-Yi, Tang Jian-Jun, Yang Yi-Song & Chen Xin. 2007. Invasive and non-invasive plants differ in response to soil heavy metal lead contamination. Botanical Studies, 48, 453–458.
- 37. Yasin M., Rosenqvist E., Jensen S.M. & Andreasen C. 2019. The importance of reduced light intensity on the growth and development of six weed species. Weed Research, 59, 130–144.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-596cea2a-a588-4e82-81c5-c3422ebf629d