Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The radio stations now use a hybrid method of broadcasting. Transmission between the studio and the transmitter is digital. In the transmitter digital signal is converted to analog and this signal is transmitted by AM or FM modulation. The identified problem are transmission errors in the digital path. Single errors in transmission are not unusual and happen in most cases systems. However, repeated and grouping errors are usually a sign of track damage transmission line and require intervention. In the article presents an example solution to automatically detect some errors that manifest themselves in the identified way. To identify transmission errors, basic statistical methods were used that allowed to create a reference data set on the basis of which it is possible to identify the fact occurrence of an error based on patterns and algorithms from the machine learning area. The environments related to the radio industry are keenly interested in researching this phenomenon because now is not available solutions allowing for automatic detection and identification of this type problems.
Czasopismo
Rocznik
Tom
Strony
art. no. 2024214
Opis fizyczny
Bibliogr. 14 poz., rys., wykr.
Twórcy
autor
- Uniwersytet Rzeszowski, Al Rejtana 16c, 35-959 Rzeszów
autor
- Uniwersytet Rzeszowski, Al Rejtana 16c, 35-959 Rzeszów
Bibliografia
- 1. D.R. Smith; Digital transmission system;. Springer science; business media, 2012
- 2. B. Chen, C-EW Sundberg; An integrated error correction and detection system for digital audio broadcasting; IEEE Transactions on Broadcastingm, 2000, 46(1), 68-78.
- 3. F. Rong; Audio classification method based on machine learning; 2016 International conference on intelligent transportation, big data & smart city (ICITBS); IEEE, 2016, 81-84; DOI: 10.1109/ICITBS.2016.98.
- 4. K.M. Silva, B.A. Souza, N.S.D. Brito; Fault detection and classification in transmission lines based on wavelet transform and ANN IEEE Transactions on power delivery, 2006, 21(4), 2058-2063
- 5. J. Ohm; Multimedia communication technology: Representation, transmission and identification of multimedia signals; Springer Science; Business Media, 2003
- 6. P. Przemielewski; Analysis of urban sound data using machine learning methods, UJ, Poland, 2021
- 7. C. Faller et al.; Technical advances in digital audio radio broadcasting; Proceedings of the IEEE, 2000, 90(8), 1303-1333
- 8. D. Sajewicz, W. Łaguna, W. Chmielnik; Detection of events in main engines based on the analysis of data from recorders; Przegląd Elektrotechniczny, 2023, 99(1), 207-210; DOI: 10.15199/48.2023.01.41
- 9. L.B. Booker, B.Lashon, D. E. Goldberg, J. H. Holland; Classifier systems and genetic algorithms; Artificial intelligence, 1989, 40(1-3), 235-282
- 10. S. W. Wilson; Classifier systems and the animat problem; Machine learning, 1987, 2, 199-228
- 11. G. Ying, et al.; A real-time defect detection method for digital signal processing of industrial inspection applications; IEEE Transactions on Industrial Informatics, 2020, 17(5), 3450-3459
- 12. S. Grabowski; The structure of minimum distance classifiers with a network structure; Lodz University of Technology, Faculty of Electronics and Electrical Engineering, Department of Applied Computer Science, 2023
- 13. H. Wolfgang, T.Lauterbach; Digital audio broadcasting.; New York: Wiley, 2003
- 14. A.Groza, E.Groza; Nonconventional applications of the radio data system.; Revista de Tehnologii Neconventionale, 2011, 15(3), 41.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5969b82e-9631-45bc-a48a-046032de4d14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.