PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of suspension and route stabilization on dynamic parameters of self-driven mine suspended monorails

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Impact of the method of suspension and route stabilization of suspended monorail on forces loading the roadway roof support system is presented. This is important in the context of possible increasing the speed of monorails during personnel movement. Nature of load and displacement of the route, as well as deceleration of the transport set, with a dynamic excitation - an emergency braking of the transport set, are presented. The results are presented for seven configurations of slings and lashings stabilizing the route. The Head Injury Criterion (HIC), recorded using the Articulated Total Body (HYBRID III) model, during the impact of operator's cabin against an obstacle, is presented in the further part of the article. Analyzes are aimed at developing the guidelines to ensure safety of mining personnel (without exceeding the accepted overloads) and mining infrastructure (without exceeding the maximum accepted load of the roadway support) during operation of the suspended monorail at higher speed. Analyzes are the result of the authors numerical simulations.
Rocznik
Strony
617--628
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • KOMAG Institute of Mining Technology, ul. Pszczyńska 37, 44-101 Gliwice, Poland
  • KOMAG Institute of Mining Technology, ul. Pszczyńska 37, 44-101 Gliwice, Poland
  • Silesian University of Technology, Department of Engineering Processes Automation and Integrated Manufacturing Systems
  • Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, ul. Akademicka 2, 44-100 Gliwice, Poland
Bibliografia
  • 1. Becker F, Zell M. The state of the art in positively guided rail transport systems for underground mining. Mining Report 2014; 105(1/2): 34 – 46, https://doi.org/10.1002/mire.201400002.
  • 2. Danelson K A, Golman A, Kemper A, Gayzik F. Finite element comparison of human and Hybrid III responses in a frontal impact. Accident Analysis and Prevention 2015, 85: 125-156, https://doi.org/10.1016/j.aap.2015.09.010.
  • 3. Herbuś K, Szewerda K, Świder J. Virtual prototyping of the suspended monorail in the aspect of increasing the permissible travel speed in hard coal mines. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 4, 610-619, http://dx.doi.org/10.17531/ein.2020.4.4.
  • 4. Horyl P, Šňupárek R, Maršálek P, Poruba Z, Pacześniowski K. Parametric Studies of Total Load-Bearing Capacity of Steel Arch Supports. Acta Montanistica Slovaca 2019; 24(3): 213-222.
  • 5. INESI (RFCS) – Increase Efficiency and Safety Improvement in Underground Mining Transportation Routes (Zwiększenie efektywności i poprawa bezpieczeństwa w podziemnych, górniczych drogach transportowych). Contract No. 754169. Okres realizacji: 2017 – 2020.
  • 6. Jagoda J, Hetmańczyk M, Stankiewicz K. Dispersed, self-organizing sensory networks supporting the technological processes. Mining Machines 2021, 2: 13-23, https://doi.org/10.32056/KOMAG2021.2.2.
  • 7. Krzystała E, Kciuk S, Mężyk A. Identyfikacja zagrożeń załogi pojazdów specjalnych podczas wybuchu. Wydawnictwo Naukowe Instytutu Technologii Eksploatacji – Państwowy Instytut Badawczy. Radom 2012, ISBN 978-83-7789-161-2.
  • 8. Lai X, Wang Y, Zhou Q, Lin Z, Culiere P. Development of a finite element pam-crash model of hybrid iii anthropomorphic test device with high fidelity. International Technical Conference on the Enhanced Safety of Vehicles (ESV). Washington:2011: 11-0031.
  • 9. Lutyński A. KOMAG activities in the domestic and international research areas. Mining Machines 2021; 4: 47-60, https://doi.org/10.32056/KOMAG2021.4.5.
  • 10. Mackay M. The increasing importance of the biomechanics of impact trauma. Sadhana 2007; 32(4): 397-408.
  • 11. National Highway Traffic Safety Administration (NHTSA), U.S. Department of Transportation (DOT). Occupant Crash Protection – Head Injury Criterion. S6.2 of MVSS 571.208, Docket 69-7, Notice 17. NHTSA, Washington, DC, 1972.
  • 12. Pieczora E, Suffner H. Rozwój napędów dołowych kolejek podwieszonych. Maszyny Górnicze 2017; 3: 44-57.
  • 13. Pieczora E, Tokarczyk J. Development of mine underground transportation with use of suspended monorails. Mining-informatics automation and electrical Engineering 2017; 4(532): 96-117, http://dx.doi.org/10.7494/miag.2017.4.532.96.
  • 14. PN-EN ISO 13850:2016-03 Bezpieczeństwo maszyn – Funkcja zatrzymania awaryjnego – Zasady projektowania.
  • 15. Post A, Hoshizaki T B, Glichrist M D, Brien S, Cusimano M, Marshall S. The dynamic response characteristics of traumatic brain injury. Accident Analysis and Prevention 2015; 79: 33-40, https://doi.org/10.1016/j.aap.2015.03.017.
  • 16. Prasad P, Mertz H J. The Position of the United States Delegation to the ISO working group 6 on the use of HIC in the Automotive Environment. Conference: SAE Government Industry Meeting and ExpositionSAE Government Industry Meeting and Exposition 1985; https://doi.org/10.4271/851246.
  • 17. Prochowski L, Żuchowski A. Analysis of the influence of passenger position in a car on a risk of injuries during a car accident. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2014; 16 (3): 360–366.
  • 18. Pytkik A, Rotkegel M, Szot Ł. Badanie wpływu prędkości kolejek podwieszonych na siły w wybranych elementach trasy. Przegląd górniczy 2016; 11: 30-37.
  • 19. Pytlik A. Tests of steel arch and rock bolt support resistance to static and dynamic loading induced by suspended monorail transportation. Studia Geotechnica et Mechanica 2019; 41(2): 81–92, https://doi.org/10.2478/sgem-2019-0009.
  • 20. Rozporządzenie Ministra Energii z dnia 23 listopada 2016 r. w sprawie szczegółowych wymagań dotyczących prowadzenia ruchu podziemnych zakładów górniczych (Dz.U. z 2017r. poz. 1118 z późn. zm).
  • 21. Song ZA, Jiang F. Hydraulic system elaboration and simulation for single-drive light-load monorail locomotive in fully mechanized coal mining applications. IOP Conf. Series: Materials Science and Engineering 2019; 474, http://dx.doi.org/10.1088/1757-899X/474/1/012006.
  • 22. Stankiewicz K. Mechatronic systems developed at the KOMAG. Mining Machines 2020(162); 2: 58 -68, https://doi.org/10.32056/KOMAG2020.2.6.
  • 23. Świder J, Szewerda K, Herbuś K, Jura J. Testing the Impact of Braking Algorithm Parameters on Acceleration and Braking Distance for a Suspended Monorail with regard to Acceptable Travel Speed in Hard Coal Mines. Energies 2021; 14, 7275 https://doi.org/10.3390/en14217275
  • 24. Szewerda K, Tokarczyk J, Bożek P, Michalak D, Drwięga A. Vibrations diagnostics and analysis in operator's and passenger cabins of a suspended monorail. Acta Montanistica Slovaca 2020; 2: 150-158, https://doi.org/10.46544/AMS.v25i2.2.
  • 25. Szewerda K, Tokarczyk J, Wieczorek A. Impact of Increased Travel Speed of a Transportation Set on the Dynamic Parameters of a Mine Suspended Monorail. Energies 2021; 14(6), https://doi.org/10.3390/en14061528.
  • 26. Teixeira R R, Moreira S R D S, Tavares S M O. Multibody dynamics simulation of an electric bus. Procedia Engineering 2015; 114: 470 – 477, https://doi.org/10.1016/j.proeng.2015.08.094.
  • 27. Tokarczyk J. Method for identification of results of dynamic overloads in assessment of safety use of the mine auxiliary transportation system. Archives of Mining Sciences 2016; 61(4): 765-777.
  • 28. Tokarczyk J. Method for virtual prototyping of cabins of mining machines operators. Archives of Mining Sciences 2015; 60 (1): 329-340.
  • 29. Tokarczyk J. Metodyka identyfikacji wybranych zagrożeń mechanicznych w pomocniczym transporcie podziemnych zakładów górniczych. Prace Naukowe – Monografie KOMAG, Monografia nr 52 2017; Instytut Techniki Górniczej KOMAG Gliwice.
  • 30. Wicher J, Więckowski D. Influence of vibrations of the child seat on the comfort of child's ride in a car. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2010; 4 (48): 102–110.
  • 31. Wojtyra M, Frączek J. Metoda układów wieloczłonowych w dynamice mechanizmów. Oficyna Wydawnicza Politechniki Warszawskiej 2007; Warszawa.
  • 32. Yýlmaz AI, Büyükyýldýz G, Ekici A, Çalýk M, Önder Ö, Aksoy CO. Staff transportation two way on the belt conveyor. Acta Montanistica Slovaca 2013; 18: 141-150.
  • 33. Żuchowski A. Analysis of the influence of the impact speed on the risk of injury of the driver and front passenger of a passenger car. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18 (3): 436–444, http://dx.doi.org/10.17531/ein.2016.3.16.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5968fb17-747f-4e0a-839d-d19480d38cb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.