PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Producing Multifunctional Cotton Fabrics Using Nano CeO2 Doped with Nano TiO2 and ZnO

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cross-link method has been used to load nano CeO2, ZnO, and TiO2 on the surface of cotton fabric. Three types of nanocomposite fabrics are prepared (cotton/CeO2, cotton/CeO2/ZnO, and cotton/CeO2/TiO2) and their properties were investigated. Field emission scanning electron microscopic (FESEM) images of the samples showed good distribution of nanomaterial, and energy dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) samples proved the usage of amount of nanomaterials. On the other hand, elemental mapping was used to study the distribution of each nanomaterial separately. Antibacterial property of the samples showed excellent results against both Gram-negative and Gram-positive bacteria. Also ultraviolet (UV)-blocking of treated samples showed that all samples have very low transmission when exposed to UV irradiation.
Rocznik
Strony
78--84
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • Department of Design and Clothing, Yazd Branch, Islamic Azad University, Yazd, Iran
  • Department of Design and Clothing, Imam Javad University College, Yazd, Iran
  • Department of Design and Clothing, Yazd Branch, Islamic Azad University, Yazd, Iran
Bibliografia
  • [1] Goncalves, G., Marques, P. A. A. P., Pinto, R. J. B., Trindade, T., Neto, C. P. (2009). Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. Composites Science and Technology, 69(7), 1051-1056.
  • [2] Subramanian, K., D’Souza, L., Dhurai, B. (2009). A study on functional finishing of cotton fabrics using nano-particles of zinc oxide. Materials Science, 15(1), 75-79.
  • [3] Li, Q., Chen, S.-L., Jiang, W.-C. (2006). Durability of nano ZnO antibacterial cotton fabric to sweat. Journal of Applied Polymer Science, 103(1), 412-416.
  • [4] Yadav, A., Prasad, V., Kathe, A. A., Raj, S., Yadav, D., et al. (2006). Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bulletin of Materials Science, 29(6), 641-645.
  • [5] Yuranova, T., Mosteco, R., Bandara, J., Laub, D., Kiwi, J. Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. Journal of Molecular Catalysis A: Chemical, 244(1-2), 160-167.
  • [6] Yan, Y., Mi, W., Zhao, J., Yang, Z., Zhang, K., et al. (2018). Study of the metal-semiconductor contact to ZnO films. Vacuum, 155, 210-213.
  • [7] Jung, H. J., Koutavarapu, R., Lee, S., Kim, J. H., Choi, H. C., et al. (2018). Enhanced photocatalytic degradation of lindane using metal–semiconductor Zn@ZnO and ZnO/Ag nanostructures. Journal of Environmental Sciences. 74, 107-115.
  • [8] Gao, D., Lyu, L., Lyu, B., Ma, J., Yang, L., et al. (2017). Multifunctional cotton fabric loaded with Ce doped ZnO nanorods. Materials Research Bulletin, 89, 102-107.
  • [9] Gao, D., Zhang, J., Lyu, B., Lyu, L., Ma, J., et al. (2018). Poly(quaternary ammonium salt-epoxy) grafted onto Ce doped ZnO composite: An enhanced and durable antibacterial agent. Carbohydrate Polymers, 200, 221-228.
  • [10] Johansson, B., Luo, W., Li, S., Ahuja, R. (2014). Cerium; crystal structure and position in the periodic table. Scientific Reports, 4, 6398.
  • [11] Kumar, R., Umar, A., Kumar, G., Akhtar, M. S., Wang, Y., et al. (2015). Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceramics International, 41(6), 7773-7782.
  • [12] Wang, Y., Xue, X., Yang, H., Luan, C. (2014). Preparation and characterization of Zn/Ce/SO42−-doped titania nano-materials with antibacterial activity. Applied Surface Science, 292, 608-614.
  • [13] Perelshtein, I., Applerot, G., Perkas, N., Wehrschetz-Sigl, E., Hasmann, A., et al. (2009). Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS Applied Materials & Interfaces, 1(2), 361-366.
  • [14] Montazer, M., Pakdel, E., Behzadnia, A. (2011). Novel feature of nano-titanium dioxide on textiles: Antifelting and antibacterial wool. Journal of Applied Polymer Science, 121(6), 3407-3413.
  • [15] Khurana, N., Adivarekar, R. V. (2013). Effect of dispersing agents on synthesis of nano titanium oxide and its application for antimicrobial property. Fibers and Polymers, 14(7), 1094-1100.
  • [16] Veronovski, N., Rudolf, A., Smole, M. S., Kreže, T., Geršak, J. (2009). Self-cleaning and handle properties of TiO2-modified textiles. Fibers and Polymers, 10(4), 551-556.-5
  • [17] Karimi, L., Mirjalili, M., Yazdanshenas, M. E., Nazari, A. (2010). Effect of nano TiO2 on self-cleaning property of cross-linking cotton fabric with succinic acid under UV irradiation. Photochemistry and Photobiology, 86(5), 1030-1037.
  • [18] Palamutcu, S., Acar, G., Çon, A. H., Gültekin, T., Aktan, B., et al. (2011). Innovative self-cleaning and antibacterial cotton textile: No water and no detergent for cleaning. Desalination and Water Treatment, 26(1-3), 178-184.
  • [19] Montazer, M., Lessan, F., Moghadam, M. B. (2012). Nano-TiO2/maleic acid/triethanol amine/sodium hypophosphite colloid on cotton to produce cross-linking and self-cleaning properties. The Journal of the Textile Institute, 103(8), 795-805.
  • [20] Chen, X., Mao, S. S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 107(7), 2891-2959.
  • [21] Chen, X., Selloni, A. (2014). Introduction: Titanium dioxide (TiO2) nanomaterials. Chemical Reviews, 114(19), 9281-9282.
  • [22] Uğur, Ş. S., Sarııšık, M., Aktaş, A. H. (2011). Nano-TiO2 based multilayer film deposition on cotton fabrics for UV-protection. Fibers and Polymers, 12(2), 190-196.
  • [23] Khan, M. Z., Ashraf, M., Hussain, T., Rehman, A., Malik, M. M., et al. (2015). In situ deposition of TiO2 nanoparticles on polyester fabric and study of its functional properties. Fibers and Polymers, 16(5), 1092-1097.
  • [24] Gaya, U. I., Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1-12.
  • [25] Dural-Erem, A., Erem, H. H., Ozcan, G., Skrifvars, M. (2015). Anatase titanium dioxide loaded polylactide membranous films: Preparation, characterization, and antibacterial activity assessment. The Journal of the Textile Institute, 106(6), 571-576.
  • [26] Behzadnia, A., Montazer, M., Rad, M. M. (2015). In situ photo sonosynthesis and characterize nonmetal/metal dual doped honeycomb-like ZnO nanocomposites on wool fabric. Ultrasonics Sonochemistry, 27, 200-209.
  • [27] Montazer, M., Behzadnia, A., Pakdel, E., Rahimi, M. K., Moghadam, M. B. (2011). Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool. Journal of Photochemistry and Photobiology B: Biology, 103(3), 207-214.
  • [28] Montazer, M., Behzadnia, A., Moghadam, M. B. (2012). Superior self-cleaning features on wool fabric using TiO2/Ag nanocomposite optimized by response surface methodology. Journal of Applied Polymer Science, 125(S2), E356-E363.
  • [29] Wang, W., Shang, Q., Zheng, W., Yu, H., Feng, X., et al. (2010). A novel near-infrared antibacterial material depending on the upconverting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder. The Journal of Physical Chemistry C, 114(32), 13663-13669.
  • [30] Caratto, V., Locardi, F., Costa, G. A., Masini, R., Fasoli, M., et al. (2014). NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: The effect of dopants. ACS Applied Materials & Interfaces, 6(20), 17346-17351.
  • [31] Faisal, M., Ismail, A. A., Ibrahim, A. A., Bouzid, H., Al-Sayari, S. A. (2013). Highly efficient photocatalyst based on Ce doped ZnO nanorods: Controllable synthesis and enhanced photocatalytic activity. Chemical Engineering Journal, 229, 225-233.
  • [32] Ibănescu, M., Muşat, V., Textor, T., Badilita, V., Mahltig, B. (2014). Photocatalytic and antimicrobial Ag/ZnO nanocomposites for functionalization of textile fabrics. Journal of Alloys and Compounds, 610, 244-249.
  • [33] Fu, F., Li, L., Liu, L., Cai, J., Zhang, Y., et al. (2015). Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Applied Materials & Interfaces, 7(4), 2597-2606.
  • [34] Manna, J., Begum, G., Kumar, K. P., Misra, S., Rana, R. K. (2013). Enabling antibacterial coating via bioinspired mineralization of nanostructured ZnO on fabrics under mild conditions. ACS Applied Materials & Interfaces, 5(10), 4457-4463.
  • [35] Gao, D., Chen, C., Ma, J., Duan, X., Zhang, J. (2014). Preparation, characterization and antibacterial functionalization of cotton fabric using dimethyl diallyl ammonium chloride-allyl glycidyl ether-methacrylic/nano-ZnO composite. Chemical Engineering Journal, 258, 85-92.
  • [36] Hatamie, A., Khan, A., Golabi, M., Turner, A. P. F., Beni, V., et al. (2015). Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir, 31(39), 10913-10921.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5967f88e-8cae-468d-82c8-031282f8242b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.