Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
We perform a temporal and spectral analysis of simulated and experimental photoplethysmographic signals. We obtain technical requirements for an advanced photoplethysmographic imaging system able to add photoplethysmographic waveform and oximetry maps to the conventional measurements. The imaging system is centered on measuring the pulsatile signals produced by diffuse reflectance on the inner layers of the skin. We consider controlled illumination conditions for the system, with visible and near infrared components. This work comprises backscattering evaluation, waveform analysis and spectral dependence of photoplethysmographic signal. We determine the resolution requirement for the system by evaluating the amplitude of the backscattered signal using Monte Carlo simulations. We determine the bandwidth limit for the signal acquisition by Fourier analysis from a set of plethysmographic waveforms. Finally, the spectral dependence of the system is obtained from experimental results. We establish the requirements for the photoplethysmographic imaging system, including the source, subject and detector conditions.
Czasopismo
Rocznik
Tom
Strony
191--204
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
- Centro de Investigaciones en Óptica A.C., Apartado Postal 1-948, C.P. 37000, León, Guanajuato, México
autor
- Centro de Investigaciones en Óptica A.C., Apartado Postal 1-948, C.P. 37000, León, Guanajuato, México
autor
- Centro de Investigaciones en Óptica A.C., Apartado Postal 1-948, C.P. 37000, León, Guanajuato, México
Bibliografia
- [1] ALLEN J., Photoplethysmography and its application in clinical physiological measurement, Physiological Measurement 28(3), 2007, pp. R1–R39.
- [2] KAMSHILIN A.A., MIRIDONOV S., TEPLOV V., SAARENHEIMO R., NIPPOLAINEN E., Photoplethysmographic imaging of high spatial resolution, Biomedical Optics Express 2(4), 2011, pp. 996–1006.
- [3] TING LI, YU LIN, YU SHANG, LIAN HE, CHONG HUANG, SZABUNIO M., GUOQIANG YU, Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter, Scientific Reports 3, 2013, article 01358.
- [4] SPIGULIS J., Biophotonic technologies for non-invasive assessment of skin condition and blood microcirculation, Latvian Journal of Physics and Technical Sciences 49(5), 2012, pp. 63–80.
- [5] O’SULLIVAN T.D., CERUSSI A.E., CUCCIA D.J., TROMBERG B.J., Diffuse optical imaging using spatially and temporally modulated light, Journal of Biomedical Optics 17(7), 2012, article 071311.
- [6] HSIN-YI TSAI, YI-JU CHEN, HAN-CHAO CHANG, KUO-CHENG HUANG, Method to obtain the high contrast images of blood vessel for oxygen saturation calculation, Proceedings of SPIE 8769, 2013, article 87690F.
- [7] DE HAAN G., JEANNE V., Robust pulse rate from chrominance-based rPPG, IEEE Transactions on Biomedical Engineering 60(10), 2013, pp. 2878–2886.
- [8] KAMSHILIN A.A., TEPOLOV V., NIPPOLAINEN E., MIRIDONOV S., GINIATULLIN R., Variability of microcirculation detected by blood pulsation imaging, PLoS ONE 8(2), 2013, article e57117.
- [9] TARASSENKO L., VILLARROEL M., GUAZZI A., JORGE J., CLIFTON D.A., PUGH C., Non-contact video-based sing monitoring using ambient light and auto-regressive models, Physiological Measurement 35(5), 2014, pp. 807–831.
- [10] KARLEN W., ANSERMINO J.M., DUMONT G.A., SCHEFFER C., Detection of the optimal region of interest for camera oximetry, Proceedings of the 35th Annual International Conference of the IEEE EMBS, July 3–7, 2013, Osaka, Japan, pp. 2263–2266.
- [11] JAKOVELS D., RUBINS U., SPIGULIS J., LASCA and PPG imaging for non-contact assessment of skin blood supply, Proceedings of SPIE 8668, 2013, article 866849.
- [12] BLANIK N., ABBAS K.A., VENEMA B., BLAZEK V., LEONHARDT S., Hybrid optical imaging technology for long-term remote monitoring of skin perfusion and temperature behavior, Journal of Biomedical Optics 19(1), 2014, article 016012.
- [13] AOYAGI T., Pulse oximetry: its invention, theory, and future, Journal of Anesthesia 17(4), 2003, pp. 259–266.
- [14] SHELLEY K.H., Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate, Anesthesia and Analgesia 105(6), 2007, pp. S31–S36.
- [15] HEBDEN J.C., SCHMIDT F.E.W., FRY M.E., SCHWEIGER M., HILLMAN E.M.C., DELPY D.T., ARRIDGE S., Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data, Optics Letters 24(8), 1999, pp. 534–536.
- [16] VERKRUYSSE W., SVAASAND L.O., NELSON J.S., Remote plethysmographic imaging using ambient light, Optics Express 16(26), 2008, pp. 21434–21445.
- [17] CENNINI G., ARGUEL J., AKSIT K., VAN LEEST A., Heart rate monitoring via remote photoplethysmography with motion artifacts reduction, Optics Express 18(5), 2010, pp. 4867–4875.
- [18] SIJUNG HU, AZORIN-PERIS V., ECHIADIS A., JIA ZHENG, PING SHI, Development of effective photoplethysmographic measurement techniques: from contact to non-contact and from point to imaging, Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, September 3–6, 2009, Minneapolis, U.S.A., pp. 6550–6553.
- [19] WIERINGA F.P., MASTIK F., VAN DER STEEN A.F.W., Contactless multiple wavelength photoplethysmographic imaging: a first step toward ‘SpO2 camera’ technology, Annals of Biomedical Engineering 33(8), 2005, pp. 1034–1041.
- [20] WIERINGA F.P., MASTIK F., BOKS R.H., VISSCHER A., BOGERS A. J.J.C., VAN DER STEEN A.F.W., In vitro demonstration of an SpO2-camera, Computers in Cardiology 34, 2007, pp. 749–751.
- [21] HUMPHREYS K., WARD T., MARKHAM C., Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry, Review of Scientific Instruments 78(4), 2007, article 044304.
- [22] VAZQUEZ-JACCAUD C., PAEZ G., STROJNIK M., Noise-immune oximetry employing a new expression for oxygen saturation in blood, Proceedings of SPIE 6678, 2007, article 66781N.
- [23] WEBSTER J., Design of Pulse Oximeters, Institute of Physics, Bristol, 1997, pp. 21–55.
- [24] LIHONG WANG, JACQUES S.L., LIQIONG ZHENG, MCML – Monte Carlo modeling of light transport in multi-layered tissues, Computer Methods and Programs in Biomedicine 47(2), 1995, pp. 131–146.
- [25] TUCHIN V.V., Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Second Edition, SPIE Press, Bellingham, 2007.
- [26] NITZAN M., ENGELBERG S., Three-wavelength technique for the measurement of oxygen saturation in arterial blood and in venous blood, Journal of Biomedical Optics 14(2), 2009, article 024046.
- [27] LISTER T., WRIGHT P.A., CHAPPELL P.H., Optical properties of human skin, Journal of Biomedical Optics 17(9) 2012, article 090901.
- [28] ROGGAN A., FRIEBEL M., DÖRSCHEL K., HAHN A., MÜLLER G., Optical properties of circulating human blood in the wavelength range 400–2500 nm, Journal of Biomedical Optics 4(1), 1999, pp. 36–46.
- [29] SALOMATINA E., JIANG B., NOVAK J., YAROSLAVSKY A.N., Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range, Journal of Biomedical Optics 11(6),2006, article 064026.
- [30] ALLEN J., MURRAY A., Age-related changes in the characteristics of the photoplethysmographic pulse shapes at various body sites, Physiological Measurement 24(2), 2003, pp. 297–307.
- [31] CORRAL MARTINEZ L.F., PAEZ G., STROJNIK M., Optimal wavelength selection for noncontact reflection photoplethysmography, Proceedings of SPIE 8011, 2011, article 801191.
- [32] VAZQUEZ-JACCAUD C., PAEZ G., STROJNIK M., Wavelength selection method with standard deviation:application to pulse oximetry, Annals of Biomedical Engineering 39(7), 2011, pp. 1994–2009.
- [33] PRAHL S., Tabulated molar extinction coefficient for hemoglobin in water, http://omlc.ogi.edu/spectra/hemoglobin/summary.html, (access date: April 2014).
- [34] MALACARA D., THOMPSON B., Handbook of Optical Engineering, Marcel Dekker, New York, 2001, pp. 649–700.
- [35] KRZANOWSKI W., Statistical Principles and Techniques in Scientific and Social Research, Oxford University Press, New York, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5965fa00-a8cb-4a8a-91f7-cf28f6b03617