PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analyzing the factors affecting the safe maritime navigation for training apprentice officers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the primary factors that affect the safe maritime navigation is the insufficient experience and skill of an apprentice officer, which may be improved using simulation-based training by ensuring operational efficiency. This study aims to determine appropriate factors for achieving effective and intensive simulation-based training of apprentice officers and present the guidelines for such a training scheme. Initially, a marine traffic risk model, which interprets and accurately measures the risk of collision with other vessels, is analyzed to derive the most influential factors in safe navigation. Subsequently, simulation experiments are conducted by applying machine learning to verify the required safe navigation factors for effectively training the apprentice officers. As a result of the above analysis, it was confirmed that the factor affecting safe maritime navigation was the distance from other vessels. Finally, the differences between these distances in the simulations are analyzed for both the apprentice officers and the experienced officers, and the guidelines corresponding to both these cases are presented. This study has the limitation because of the difference between the ship maneuver simulation and the actual ship navigation. This can be resolved based on the results of this study, in combination with the actual navigation data.
Twórcy
autor
  • Ocean Science and Technology School of Korea Maritime and Ocean University, Busan, South Korea
autor
  • Korea Maritime Institute, Busan, South Korea
autor
  • Korea Maritime and Ocean University, Busan, S.Korea
autor
  • Korea Maritime and Ocean University, Busan, S.Korea
autor
  • SafeTechResearch, Inc., Daejeon, S.Korea
Bibliografia
  • 1. E.W. Rymarz. (2007): The Determination of a Minimum Critical Distance for Avoiding Action by a Stand‐on Vessel as Permitted by Rule 17a) ii, TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol.1, No.1, 63‐68
  • 2. G. Rutkowski. (2016): Determining Ship’s Safe Speed and  Best Possible Speed for Sea Voyage Legs, TransNav, the  International Journal on Marine Navigation and Safety  of Sea Transportation, Vol.10, No.3, 425‐430 
  • 3. Hiroaki S., Mirai O., Hideo U., Masatoshi S. (2010): Marine  Traffic Analysis of Three Major Bay – Ship Handling  Difficulty of Ship Equipped with AIS, Japan Institute of  Navigation, Vol.123, No.3, 13‐19 
  • 4. Inoue,  K.,  Kubono,  M.,  Miyasaka,  M.,  Hara,  D.  (1998):  Modeling of Mariners’ Perception of Safety when Being  Faced with Imminent Danger (In Japanese), Journal of  Japan Institute of Navigation, 235‐245
  • 5. Karlsson T. (2011): The importance of structured briefings &  debriefings for objective evaluation of ARPA simulator  training, Chalmers University, Ph.D.  
  • 6. Lee Myoungki (2018): A Study on the Evaluation of RADAR  /  ARPA  Simulation  Training  Results,  Korea  maritime  and Ocean University graduate school, Master Thesis
  • 7. Nguyen, X. T. (2014): A Basic Study on the Development of  Real Time Supporting System (RTSS) for VTS Officers,  Korea maritime and Ocean University graduate school.  Ph.D. 
  • 8. Park  Sang‐won,  Park  Young‐soo,  Park  Jin‐soo  (2017):  A  Study  on  Basic  VTS  Guideline  based  on  Shipʹs  Operatorʹs Consciousness, TransNav, the International  Journal  on  Marine  Navigation  and  Safety  of  Sea  Transportation, Vol.11, No.4, 597‐603 
  • 9. Park Young‐Soo (2016): A Study on the Standardization of  Education Modules for ARPA/Radar Simulation, Journal  of the Korean Society of Marine Environment & Safety,  Vol.22, No.6, 631‐638 
  • 10. Park Young‐Soo, Jeong Jae‐Yong, Kim Jong‐Sung (2010): A  Study  on  the  Minimum  Safety  Distance  between  Navigation Vessels based on Vessel Operator’s Safety  Consciousness, Journal of the Korean Society of Marine  Environment & Safety, Vol.16, No.4, 401‐406 
  • 11. Park Hae‐sun (2017): Introduction to machine learning with  python, Hanbit Media, Inc. 115‐121, 335‐360 
  • 12. Shin Dae‐Woon, Park Young‐Soo, Kim Dae‐Hae (2017): A  Study on the effect ARPA/RADAR Simulation Training,  Journal of the Korean Society of Marine Environment &  Safety, Vol.23, No.3, 294‐30
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59642a2c-2f5c-4416-942f-34c3601f0a81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.