PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrical properties of sugar palm nanocrystalline cellulose reinforced sugar palm starch nanocomposites

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Właściwości elektryczne nanokompozytów skrobi z palmy cukrowej wzmocnionej włóknami nanokrystalicznej celulozy z palmy cukrowej
Języki publikacji
EN
Abstrakty
EN
In this study, the effect of sugar palm nanocrystalline cellulose (SPNCC) loading (0.00–0.10 wt %) on the electrical resistance, resistivity, and conductivity of SPS/SPNCC (SPS – sugar palm starch) nanocomposite films were evaluated. The experiments were conducted using the four-probe method and Ohm’s law, resistivity and conductivity equations were utilized to obtain the electrical properties. The results revealed that the resistivity values of SPS/SPNCC films were found to be in the range of 3.1 · 102 to 1.5 · 104 (Ω · cm).
PL
Oceniono wpływ dodatku nanokrystalicznej celulozy otrzymanej z palmy cukrowej (SPNCC) (0,00–0,10% mas.) na rezystancję elektryczną, rezystywność i przewodnictwo folii wytworzonych z nanokompozytów (SPS/SPNCC) na bazie skrobi z palmy cukrowej (SPS). Badania przeprowadzono metodą czterosondową z zastosowaniem prawa Ohma; właściwości elektryczne określono na podstawie równań rezystywności i przewodności. Stwierdzono, że wartość rezystywności folii SPS/SPNCC mieści się w zakresie konduktywności od 3,1 · 102 do 1,5 · 104 (Ω · cm).
Czasopismo
Rocznik
Strony
363--372
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
autor
  • Universiti Putra Malaysia, Department of Mechanical and Manufacturing Engineering, Advanced Engineering Materials and Composites Research Centre (AEMC), 43400 UPM Serdang, Selangor, Malaysia
autor
  • Universiti Putra Malaysia, Department of Mechanical and Manufacturing Engineering, Advanced Engineering Materials and Composites Research Centre (AEMC), 43400 UPM Serdang, Selangor, Malaysia
  • Institute of Tropical Foresty and Forest Products, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Universiti Putra Malaysia, Department of Mechanical and Manufacturing Engineering, Advanced Engineering Materials and Composites Research Centre (AEMC), 43400 UPM Serdang, Selangor, Malaysia
  • Institute of Tropical Foresty and Forest Products, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Universiti Putra Malaysia, Department of Electrical and Electronic Engineering, 43400 UPM Serdang, Selangor, Malysia
  • Universiti Putra Malaysia, Department of Mechanical and Manufacturing Engineering, Advanced Engineering Materials and Composites Research Centre (AEMC), 43400 UPM Serdang, Selangor, Malaysia
Bibliografia
  • [1] Naik J.B., Mishra S.: Polymer-Plastics Technology and Engineering 2005, 44, 687. http://dx.doi.org/10.1081/PTE-200057818
  • [2] Hazrol M.D., Sapuan S.M., Zuhri M.Y.M., Ilyas R.A.: “Electrical properties of sugar palm nanocellulose fiber reinforced sugar palm starch biopolymer composite”, Prosiding Seminar Enau Kebangsaan 2019, Bahau, Negeri Sembilan, Malaysia: Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia 2019, pp. 57–62.
  • [3] Malik R., Kim H., Kim Y., Kim K.J.: Ceramics International 2018, 44, 16394. http://dx.doi.org/10.1016/j.ceramint.2018.06.049
  • [4] Xie G., Ding D., Zhang G.: Advances in Physics: X 2018, 3, 719. http://dx.doi.org/10.1080/23746149.2018.1480417
  • [5] Bhardwaj G.: “Measurment of electrical conductivity of natural fiber composite” MTech Thesis, National Institute of Technology, Rourkela 2013.
  • [6] Jumaidin R., Ilyas R.A., Saiful M. et al.: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2019, 61, 273.
  • [7] Jumaidin R., Saidi Z.A.S., Ilyas R.A. et al.: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2019, 62, 43.
  • [8] Saifulazry S., Al O., Tahir P. et al.: International Journal of Recent Technology and Engineering 2019, 8, 528. http://dx.doi.org/10.35940/ijrte.B1104.0782S419
  • [9] Maisara A.M.N., Ilyas R.A., Sapuan S.M. et al.: International Journal of Recent Technology and Engineering 2019, 8, 510. http://dx.doi.org/10.35940/ijrte.b1100.0782s419
  • [10] Ilyas R.A., Sapuan S.M., Ibrahim R. et al.: Journal of Biobased Materials and Bioenergy 2020, 14, 1. http://dx.doi.org/10.1166/jbmb.2020.1951
  • [11] Atikah M.S.N., Ilyas R.A., Sapuan S.M. et al.: Polimery 2019, 64, 27. http://dx.doi.org/10.14314/polimery.2019.10.5
  • [12] Norizan M.N., Abdan K., Ilyas R.A.: Polimery 2020,65, 34. http://dx.doi.org/10.14314/polimery.2020.2.5
  • [13] Nurazzi N.M., Khalina A., Sapuan S.M., Ilyas R.A.: Polimery 2019, 64, 12. http://dx.doi.org/10.14314/polimery.2019.10.3
  • [14] Atiqah A., Jawaid M., Sapuan S.M. et al.: Journal of Materials Research and Technology 2019, 8, 3726. http://dx.doi.org/10.1016/j.jmrt.2019.06.032
  • [15] Sanyang M.L., Ilyas R.A., Sapuan S.M., Jumaidin R.: “Bionanocomposites for Packaging Applications” (Eds. Jawaid M., Swain S.K.), Cham: Springer International Publishing, 2018, pp. 125–147. http://dx.doi.org/10.1007/978-3-319-67319-6_7
  • [16] Ilyas R.A., Sapuan S.M., Ibrahim R. et al.: Journal of Materials Research and Technology 2019, 8, 4819. http://dx.doi.org/10.1016/j.jmrt.2019.08.028
  • [17] Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S.: International Journal of Biological Macromolecules 2019, 123, 379. http://dx.doi.org/10.1016/j.ijbiomac.2018.11.124
  • [18] Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S.: BioResources 2017, 12, 8734.http://dx.doi.org/10.15376/biores.12.4.8734-8754
  • [19] Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S.: Carbohydrate Polymers 2018, 202, 186. http://dx.doi.org/10.1016/j.carbpol.2018.09.002
  • [20] Ilyas R.A., Sapuan S.M., Ibrahim R. et al.: Journal of Materials Research and Technology 2019, 8, 2753. http://dx.doi.org/10.1016/j.jmrt.2019.04.011
  • [21] Sahari J., Sapuan S.M., Zainudin E.S., Maleque M.A.: Journal of Biobased Materials and Bioenergy 2013, 7, 90. http://dx.doi.org/10.1166/jbmb.2013.1267
  • [22] Radzi A.M., Sapuan S.M., Jawaid M., Mansor M.R.: BioResources 2018, 13, 6238.
  • [23] Sapuan S.M., Ilyas R.A.: INTROPica 2017, pp. 5–7.
  • [24] Sapuan S.M., Ishak M.R., Leman Z. et al.: INTROPica 2017, pp. 12–13.
  • [25] Ilyas R.A., Sapuan S.M., Sanyang M.L. et al.: Current Analytical Chemistry 2018, 14, 203. http://dx.doi.org/10.2174/1573411013666171003155624
  • [26] Ilyas R.A., Sapuan S.M., Ishak M.R. et al.: “Sugar Palm Biofibers, Biopolymers, and Biocomposites” First Edition, Boca Raton, FL : CRC Press/Taylor & Francis Group, CRC Press 2018, pp. 189–219. http://dx.doi.org/10.1201/9780429443923-10
  • [27] Mazani N., Sapuan S.M., Sanyang M.L. et al.: “Lignocellulose for Future Bioeconomy”, Elsevier, 2019, pp. 315–332. http://dx.doi.org/10.1016/B978-0-12-816354-2.00017-7
  • [28] Abral H., Basri A., Muhammad F. et al.: Food Hydrocolloids 2019, 93, 276. http://dx.doi.org/10.1016/j.foodhyd.2019.02.012
  • [29] Abral H., Ariksa J., Mahardika M. et al.: Food Hydrocolloids 2020, 98, 105266. http://dx.doi.org/10.1016/j.foodhyd.2019.105266
  • [30] Abral H., Ariksa J., Mahardika M. et al.: Polymer Testing 2019, 106186. http://dx.doi.org/10.1016/j.polymertesting.2019.106186
  • [31] Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S.: IOP Conference Series: Materials Science and Engineering 2018, 368, 12006. http://dx.doi.org/10.1088/1757-899X/368/1/012006
  • [32] Ilyas R.A, Sapuan S.M., Ishak M.R., Zainudin E.S.: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2018, 51, 234.
  • [33] Ilyas R.A., Sapuan S.M., Atiqah A. et al.: Polymer Composites 2019, 1–9. http://dx.doi.org/10.1002/pc.25379
  • [34] Tsanov T., Mokreva P., Terlemezyan L.: Polymers and Polymer Composites 1997, 5, 299.
  • [35] Whetzel J.: “Why Is Conductivity Important?”, SciencingCom 2017.
  • [36] Sanyang M.L., Sapuan S.M., Jawaid M. et al.: BioResources 2016, 11, 4134. http://dx.doi.org/10.15376/biores.11.2.4134-4145
  • [37] Ilyas R.A., Sapuan S.M., Ishak M.R.: Carbohydrate Polymers 2018, 181, 1038. http://dx.doi.org/10.1016/j.carbpol.2017.11.045
  • [38] Halimatul M.J., Sapuan S.M., Jawaid M. et al.: Polimery 2019, 64, 27. http://dx.doi.org/10.14314/polimery.2019.9.4
  • [39] Halimatul M.J., Sapuan S.M., Jawaid M. et al.: Polimery 2019, 64, 32. http://dx.doi.org/10.14314/polimery.2019.6.5
  • [40] Orlova T.S., Popov V.V., Quispe Cancapa J. et al.: Journal of the European Ceramic Society 2011, 31, 1317. http://dx.doi.org/10.1016/j.jeurceramsoc.2010.06.015
  • [41] Lukianova O.A., Khmara A.N., Perevislov S.N. et al.: Ceramics International 2018. http://dx.doi.org/10.1016/j.ceramint.2018.09.198
  • [42] Sołtys M., Górny A., Pisarska J., Pisarski W.A.: Journal of Non-Crystalline Solids 2018, 498, 352. http://dx.doi.org/10.1016/j.jnoncrysol.2018.03.033
  • [43] Devi D.S.P., Bipinbal P.K., Jabin T., Kutty S.K.N.: Journal of Materials & Design 2013, 43, 337. http://dx.doi.org/10.1016/j.matdes.2012.06.042
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5963d91e-32ae-47ea-89c6-01a5d7676e4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.