PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved corrosion resistance in biomaterial applications of AISI 316L alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses the corrosion performance of AISI 316L stainless steel, an important biomaterial, in simulated physiological environments and aggressive media. Rectangular samples (1 cm × 1 cm, 1 mm thickness) were prepared from 316L alloy and electrochemical tests were performed in a 3 electrode cell at 37 ◦C ± 0.4 ◦C. Potentiodynamic polarization curves were recorded after 2 hours of immersion in Ringer's solution and other media with an overvoltage range of [ -400 mV, +400 mV] versus Ag/AgCl. The polarization resistance in Ringer's solution was 2.1 kΩ·cm2 (±0.18) with corrosion current density of 0.23 µA/cm2, which was better than NaCl and HNO3 solutions. The carbonate ions in Ringer's inhibited the pitting corrosion pathway while low carbon content in the alloy prevented the formation of carbides at grain boundaries inhibiting intergranular corrosion. These results demonstrate that the homogeneity of the alloy and stability of the passive film are both essential to corrosion resistance and influenced by other factors such as chemical composition, structure, and environmental condition. These findings provide evidence for AISI 316L stainless steel as appropriate biomedical material where long-term corrosion resistance is an important design factor.
Twórcy
Bibliografia
  • 1. Todros S, Todesco M, Bagno A. Biomaterials and their biomedical applications: From replacement to regeneration. Processes. 2021;9(11):1949. doi: 10.3390/pr9111949.
  • 2. Al-Shalawi FD, Mohamed Ariff AH, Jung D-W, Mohd Ariffin MKA, Seng Kim CL, Brabazon D, et al. Biomaterials as implants in the orthopedic field for regenerative medicine: metal versus synthetic polymers. Polymers. 2023;15(12):2601. doi: 10.3390/polym15122601.
  • 3. Bazaka O, Bazaka K, Kingshott P, Crawford RJ, Ivanova EP. Metallic Implants for Biomedical Applications. In: Spicer C, editor. The Chemistry of Inorganic Biomaterials: Royal Society of Chemistry; 2021;1–98.
  • 4. Davis R, Singh A, Jackson MJ, Coelho RT, Prakash D, Charalambous CP, et al. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. The International journal, advanced manufacturing technology. 2022;120(3–4):1473–530. doi: 10.1007/s00170-022-08770-8.
  • 5. Moghadasi K, Mohd Isa MS, Ariffin MA, Mohd jamil MZ, Raja S, Wu B, et al. A review on biomedical implant materials and the effect of friction stir based techniques on their mechanical and tribological properties. Journal of Materials Research and Technology. 2022;17:1054-121. doi: https://doi.org/10.1016/j.jmrt.2022.01.050.
  • 6. Knetsch MLW. Evolution of Current and Future Concepts of Biocompatibility Testing. In: Dumitriu S, Popa V, editors. Polymeric Biomaterials: CRC Press; 2013;377–414.
  • 7. Baltatu M-S, Burduhos-Nergis D-D, Burduhos-Nergis DP, Vizureanu P. Advanced metallic biomaterials: Materials Research Foundations; 2022.
  • 8. Mitra M, Mitra S, Nandi DK. Human Physiology and Metabolism: An Overview. In: Mitra M, Mitra S, Nandi DK, editors. Body Recomposition: CRC Press; 2024;43–58.
  • 9. Iswanto PT, Faqihudin A, Sadida HM, editors. Distribution of Hardness, Surface Roughness and Wettability of AISI 316L Induced by Shot Peening with Different Duration and Shooting Distance. 2020: IOP Publishing.
  • 10. Kostova I. The role of complexes of biogenic metals in living organisms. Inorganics. 2023;11(2):56. doi: 10.3390/inorganics11020056.
  • 11. Jastrząb R, Łomozik L, Tylkowski B. Complexes of biogenic amines in their role in living systems. Physical Sciences Reviews. 2016;1(6). doi: 10.1515/psr-2016-0003.
  • 12. Liu P, Hu L, Zhao X, Zhang Q, Yu Z, Hu J, et al. Investigation of microstructure and corrosion behavior of weathering steel in aqueous solution containing different anions for simulating service environments. Corrosion Science. 2020;170:108686. doi: 10.1016/j.corsci.2020.108686.
  • 13. Guo Y, Xue J, Zhang J, Chen Q, Fan L, Tang C, et al. Effect of corrosion products on the inhibitory performance of imidazolium ionic liquid toward carbon steel in CO2-saturated NaCl brine. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022;651:129135. doi: 10.1016/j.colsurfa.2022.129135.
  • 14. Armiento AR, Hatt LP, Sanchez Rosenberg G, Thompson K, Stoddart MJ. Functional biomaterials for bone regeneration: a lesson in complex biology. Advanced Functional Materials. 2020;30(44):1909874. doi: 10.1002/adfm.201909874.
  • 15. Souza JCM, Apaza-Bedoya K, Benfatti CAM, Silva FS, Henriques B. A comprehensive review on the corrosion pathways of titanium dental implants and their biological adverse effects. Metals. 2020;10(9):1272. doi: 10.3390/met10091272.
  • 16. Nagay BE, Cordeiro JM, Barao VAR. Insight into corrosion of dental implants: from biochemical mechanisms to designing corrosion-resistant materials. Current oral health reports. 2022;9(2):7–21. doi: 10.1007/s40496-022-00306-z.
  • 17. Pilliar RM. Metallic biomaterials. In: Narayan R, editor. Biomedical materials. Boston, MA: Springer; 2021;41–81.
  • 18. Thanigaivel S, Priya AK, Balakrishnan D, Dutta K, Rajendran S, Soto-Moscoso M. Insight on recent development in metallic biomaterials: Strategies involving synthesis, types and surface modification for advanced therapeutic and biomedical applications. Biochemical Engineering Journal. 2022;187:108522. doi: 10.1016/j.bej.2022.108522.
  • 19. Mani G, Porter D, Collins S, Schatz T, Ornberg A, Shulfer R. A review on manufacturing processes of cobalt‐chromium alloy implants and its impact on corrosion resistance and biocompatibility. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2024;112(6):e35431. doi: 10.1002/jbm.b.35431.
  • 20. Wu W, Luo J, Li D, Feng X, Tang L, Fang Z, et al. Experimental investigation of heat transfer performance of a finned-tube heat exchanger under frosting conditions. Sustainable Cities and Society. 2022;80:103752. doi: 10.1016/j.scs.2022.103752.
  • 21. Pandey A, Awasthi A, Saxena KK. Metallic implants with properties and latest production techniques: a review. Advances in Materials and Processing Technologies. 2020;6(2):405–40. doi: 10.1080/2374068X.2020.1731236.
  • 22. Smith P. 8 - Glossaries and Abbreviations. In: Smith P, editor. Piping Materials Guide. Burlington: Gulf Professional Publishing; 2005;243–332.
  • 23. Snizhnoi G. Dependence of corrosion resistance of austenitic chromium-nickel steels on the magnetic state of austenite. In: Ambrish S, editor. Stainless Steels. Rijeka: IntechOpen; 2022;4.
  • 24. Snizhnoi GV, Snizhnoi VL. Magnetometric assessment of the influence of chemical elements on the corrosion of austenitic Fe-Cr-Ni alloys. Materials Science. 2024. doi: 10.1007/s11003-024-00857-9.
  • 25. Ettefagh AH, Guo S, Raush J. Corrosion performance of additively manufactured stainless steel parts: A review. Additive manufacturing. 2021;37:101689. doi: 10.1016/j.addma.2020.101689.
  • 26. Kaae PH, Eikeland EZ. Corrosion Performance of Additively Manufactured Stainless Steel by Binder Jetting. IOP Conference Series: Materials Science and Engineering. 2022;1249(1):012051. doi: 10.1088/1757-899X/1249/1/012051.
  • 27. Ghaidan AAA, Jomah AJS. Enhancing mechanical properties of low alloy steel through novel molten Bi-Ga austempering. Diyala Journal of Engineering Sciences. 2024:173–81.
  • 28. Shehab AA, Nawi SA, Al-Rubaiy A, Hammoudi Z, Hafedh SA, Abass MH, et al. CO2 laser spot welding of thin sheets AISI 321 austenitic stainless steel. Archives of Materials Science and Engineering. 2020;106(2).
  • 29. Mohamed MT, Nawi SA, Algailani HM, Al-rubaiy AAAG, Mahmoud AK, Farman S, et al. Evaluation of the mechanical performance of iron–polymethyl methacrylate and polystyrene polymer products based on alumina nanomaterials. Advances in Science and Technology Research Journal. 2025;19(3):202–10.
  • 30. Nawi SA, Mohammed HB, Jasim AN, Sharaf HK, Muhammad MT. Numerical analysis of the influence of the rolling speed on the cold rolling under specific thermal condition of the AA 5052-O aluminum alloy. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 2024;122(1):69–79.
  • 31. Alrubaiy AAAG, Aljuhashy RM, Al-Bakri BAR. Experimental investigation of diesel-WCOB engine performance with a small proportion of ethanol/isobutanol as a fuel additive. International Journal of Integrated Engineering. 2023;15(7):82–8.
  • 32. Pathote D, Jaiswal D, Singh V, Behera CK. Optimization of electrochemical corrosion behavior of 316L stainless steel as an effective biomaterial for orthopedic applications. Materials today: proceedings. 2022;57:265–9. doi: 10.1016/j.matpr.2022.02.501.
  • 33. Zatkalíková V, Uhríčik M, Markovičová L, Pastierovičová L, Kuchariková L. The effect of sensitization on the susceptibility of AISI 316L biomaterial to pitting corrosion. Materials. 2023;16(16):5714. doi: 10.3390/ma16165714.
  • 34. Morsiya C. A review on parameters affecting properties of biomaterial SS 316L. Australian Journal of Mechanical Engineering. 2022;20(3):803–13. doi: 10.1080/14484846.2020.1752975.
  • 35. Benčina M, Kovač J, Lakota K, Žigon P, Kralj-Iglič V, Iglič A, et al. Chapter Three - Advancements and biocompatibility of stainless steel: Improved cell membrane adhesion and antibacterial properties. In: Iglič A, Rappolt M, Losada-Pérez P, editors. Advances in Biomembranes and Lipid Self-Assembly. 40: Academic Press; 2024;33–53.
  • 36. Hryniewicz T, Rokosz K, Rokicki R. Electrochemical and XPS studies of AISI 316L stainless steel after electropolishing in a magnetic field. Corrosion Science. 2008;50:2676–81. doi: 10.1016/j.corsci.2008.06.048.
  • 37. Lai WY, Zhao WZ, Yin ZF, Zhang J. Electrochemical and XPS studies on corrosion behaviours of AISI 304 and AISI 316 stainless steels under plastic deformation in sulphuric acid solution. Surface and Interface Analysis. 2012;44(5):505–12. doi: https://doi.org/10.1002/sia.3830.
  • 38. Håkansson E. Inhibition of pitting corrosion in 316L stainless steel: an evaluation of the phenomena and method to facilitate material selection for processing equipment: Lund University; 2024.
  • 39. Voisin T, Shi R, Zhu Y, Qi Z, Wu M, Sen-Britain S, et al. Pitting corrosion in 316L stainless steel fabricated by laser powder bed fusion additive manufacturing: a review and perspective. JOM. 2022;74(4):1668–89. doi: 10.1007/s11837-022-05206-2.
  • 40. Tan L, Wang Z, Ma Y. Tribocorrosion behavior and degradation mechanism of 316L stainless steel in typical corrosive media. Acta Metallurgica Sinica (English Letters). 2021;34:813–24. doi: 10.1007/s40195-020-01182-1.
  • 41. Liu Y, Liu L, Li S, Wang R, Guo P, Wang A, et al. Accelerated deterioration mechanism of 316L stainless steel in NaCl solution under the intermittent tribocorrosion process. Journal of Materials Science & Technology. 2022;121:67–79. doi: https://doi.org/10.1016/j.jmst.2022.01.011.
  • 42. Iswanto PT, Akhyar H, Faqihudin A. Effect of shot peening on microstructure, hardness, and corrosion resistance of AISI 316L. Journal of Achievements in materials and manufacturing Engineering. 2018;89(1):19–26.
  • 43. Prabakaran K, Rajeswari S. Electrochemical, SEM and XPS investigations on phosphoric acid treated surgical grade type 316L SS for biomedical applications. Journal of applied electrochemistry. 2009;39:887–97.
  • 44. Bocchetta P, Chen L-Y, Tardelli JDC, Reis ACd, Almeraya-Calderón F, Leo P. Passive layers and corrosion resistance of biomedical Ti-6Al-4V and β-Ti alloys. Coatings. 2021;11(5):487.
  • 45. Man C, Dong C, Liu T, Kong D, Wang D, Li X. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid. Applied Surface Science. 2019;467:193–205.
  • 46. Bahrawy A, El-Rabiei M, Elfiky H, Elsayed N, Arafa M, Negem M. Electrochemical behaviour of some commercial stainless steel alloys in simulated body fluid electrolytes. Anti-Corrosion Methods and Materials. 2021;68(3):167–81.
  • 47. Bidhendi HRA, Pouranvari M. Corrosion study of metallic biomaterials in simulated body fluid. Metallurgical and Materials Engineering. 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5956b6a3-4888-4c56-a32b-8ef8cd9d1021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.