PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of polymer waste addition on the quality of concrete composite

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Concrete is one of the most important construction materials, which, due to its properties, provides complete freedom in using it in construction, and thus in shaping the space. Despite numerous advantages (ease of use, high compressive strength, low production cost, resistance to high temperatures), it also has disadvantages, which include, first of all, low tensile strength and sensitivity to the destructive effects of chemical agents. The continuous increase in expectations regarding the improvement of concrete quality meant that concrete began to be modified, inter alia, with polymers to eliminate the above-mentioned disadvantages. This paper presents a review of articles on the possibilities of using polymer waste in concrete technology and their impact on the quality of the produced concrete composites.
Wydawca
Rocznik
Strony
326--338
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
  • Czestochowa University of Technology, Faculty of Civil Engineering, Poland
Bibliografia
  • 1.Aggarwal, Y., Siddique, R., 2014. Microstructure and properties of concrete using bottom ash and waste foundry sand as partialreplacement of fine aggregates. Construction and Building Materiasl, 54, 210-223.
  • 2.Albano, C., Camacho, N., Reyes, J., Feliu, J.L., Herna´ndez, M., 2005. Influence of scrap rubber to Portland I concrete composites: destructive and non-destructive testing, Compos. Struct. 71, 439-446.
  • 3.Babu, K. G., Babu, D. S., 2003. Behaviour of lightweight expanded polystyrene concrete containing silica fume, Cement and Concrete Research, 33, 755-762.
  • 4.Babu, D. S., Babu, K. G., Wee, T., 2005. Properties of lightweight expanded polystyrene aggregate concretes containing fly ash, Cement and Concrete Research, 35, 1218-1223.
  • 5.Babu, D.S., Babu, K.G., Tiong-Huan, W., 2006. Effect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete, Cement and Concrete Composites, 28, 520-527.
  • 6.Balaha, M.M., Badawy, A.A.M., Hashish, M., 2007. Effect of using ground tire rubber as fine aggregate on the behaviour of concrete mixes, Indian J. Eng. Mater. Sci. 14, 427-435.
  • 7.Bostanci, S.C., Limbachiya, M., Kew, H., 2016. Portland-composite and composite cement concretes made with coarse recycled and recycled glass sand aggregates: Engineering and durability properties. Construction and Building Materiasl, 128, 324-340.
  • 8.Batayneh, Malek K., Marie, Iqbal, Asi, Ibrahim, 2008. Promoting the use of crumb rubber concrete in developing countries, Waste Manage. 28, 2171-2176.
  • 9.Bravo, M.l, de Brito, J., 2012. Concrete made with used tyre aggregate: durability-related performance, J. Clean. Prod. 25, 42-50.
  • 10.Chaudhary, M., Srivastava, V., Agarwal, V., 2014. Effect of waste low density polyethylene on mechanical properties of concrete, J. Acad. Ind. Res., 3, 123.
  • 11.Chen, B., Liu, J., 2004. Properties of lightweight expanded polystyrene concreto reinforced with steel fiber, Cement and Concrete Research, 34, 1259-1263.
  • 12.Choi, Y. W., Moon, D. J., Chung, J. S., Cho, S. K., 2005. Effects of waste PET bottlers aggregate on the properties of concrete, Cement Concrete Research, 35, 776-781.
  • 13.Choi, Y. W., Moon, D. J., Kim, Y. J., Lachemi, M., 2009. Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles. Construction and Building Materiasl, 23, 2829-2835.
  • 14.Choi, S. -J., Kim, Y. -U., Oh, T.-G., Cho, B.-S, 2020. Compressive Strength, Chloride Ion Penetrability, and Carbonation Characteristic of Concrete with Mixed Slag Aggregate. Materials, 13, 940.
  • 15.Fraternali, F., Ciancia, V., Chechile, R., Rizzano, G., Feo, L., Incarnato, L., 2010. Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete, Compos. Struct., 93, 2368-2374.
  • 16.Fraternali, F., Spadea, S., Berardi, V. P., 2014. Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes, Construction and Building Materiasl, 61, 293-302.
  • 17.Halicka, A., Ogrodnik, P., Zegardlo, B., 2013. Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materiasl, 48, 295-305.
  • 18.Han, C.-G., Hwang, Y.-S., Yang, S.-H., Gowripalan, N., 2005. Performance of spalling resistance of high performance concrete with polypropylene fiber contents and lateral confinement, Cem. Concr. Res. 35, 1747-1753.
  • 19.Hsie, M., Tu, C., Song, P., 2008. Mechanical properties of polypropylene hybrid fiber- reinforced concrete, Mater. Sci. Eng.: A 494, 153-157.
  • 20.Kan, A., Demirbog˘a, R., 2009. A novel material for lightweight concrete production, Cement and Concrete Composites, 31, 489-495.
  • 21.Kishore, K., Gupta, N., 2020. Application of domestic & industrial waste materials in concrete: A review. Materials Today Proceedings, 26, 2926-2931.
  • 22.Khadakbhavi, B., Reddy, D.V.V., Ullagaddi, D., 2010. Effect of aspect ratios of waste Hdpe fibres on the properties of fibres on fiber reinforced concrete, Res. J. Eng. Technol., 3, 13-21.
  • 23.Kołtuńczyk E., Nowicka G., 2007. Effect of poly(sodium- 4-styrenesulphonate) additives on properties of cement suspensions, Proceedings of International Scientific Conference „Surfactants and Dispersed Systems in Theory and Practice”, Ed: K.A. Wilk, PALMAPress, Wrocław , 533-536.
  • 24.Kosior-Kazberuk M., Berkowski P., 2016. Fracture Mechanics Parameters of Fine Grained Concrete with Polypropylene Fibres, Proc. Eng. 161, 157-162.
  • 25.Madandoust, R., Ranjbar, M. M., Mousavi, S. Y., 2011. An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene, Construction and Building Materiasl, 25, 3721-3731.
  • 26.Martínez-Barrera, G., Vigueras-Santiago, E., Hernández-López, S., Brostow, W., Menchaca-Campos, C., 2005. Mechanical improvement of concrete by irradiated polypropylene fibers, Polym. Eng. Sci. 45, 1426-1431.
  • 27.Martínez-Barrera, G., Menchaca-Campos, C., Hernández-López, S., Vigueras-Santiago, E., Brostow, W., 2006. Concrete reinforced with irradiated nylon fibers, J. Mater. Res. 21, 484–491.
  • 28.Martínez-Barrera, G., Ureña-Nuñez, F., Gencel, O., Brostow, W., 2011. Mechanical properties of polypropylene-fiber reinforced concrete after gamma irradiation, Compos. A Appl. Sci. Manuf. 42, 567-572.
  • 29.Nibudey, R., Nagarnaik, P., Parbat, D., Pande, A., 2013. Strength and fracture properties of post consumed waste plastic fiber reinforced concrete, International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development, (IJCSEIERD), 9-16.
  • 30.Naik, T. R., Singh, S. S., Huber, C. O., Brodersen, B.,S., 1996. Use of post-consumer waste plastics in cement-based composites. Cem. Concr. Res., 26, 1489-1492.
  • 31.Onuaguluchi, O., Panesar, D.K., 2014. Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume, J. Clean. Prod. 82, 125-131.
  • 32.Pietrzak A., 2019. The effect of adding slag, achieved from wastewater sludge incineration in fluided-bed furnace, on the quality of concrete. Quality Production Improvement, 1, 244-250.
  • 33.Pietrzak, A., Ulewicz, M., 2021. Properties and Structure of Concretes Doped with Production Waste of Thermoplastic Elastomers from the Production of Car Floor Mats. Materials, 14, 872.
  • 34.Ochi, T., Okubo, S., Fukui, K., 2007. Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites, 29, 448-455.
  • 35.Pelisser, F., Montedo, O.R.K., Gleize, P.J.P., Roman, H.R., 2012. Mechanical properties of recycled PET fibers in concrete, Materials Research, 15, 679-686.
  • 36.Pietrzak , A., Ulewicz, M., 2019, The influence of addition of CRT Glass cullet on selected parameters of concrete composites. 2nd International Conference on the Sustainable Energy and Environmental Development IOP Conf. Series: Earth and Environmental Science, 214, Krakow.
  • 37.Royer, B., R. M. N. de Assuncao, Oliveira J. S., Filho G. R., L. A. de Castro Motta, 2005. Synthesis, characterization and application of the sodium poly(styrenesulfonate) produced from waste polystyrene cups as an admixture in concrete, Journal of Applied Polymer Science, 96, 1534-1538.
  • 38.Sabaa, B., Ravindrarajah, R. S., 1997. Engineering properties of lightweight concreto containing crushed expanded polystyrene waste, In: Fall Meeting, Symposium MM, Advances in Materials for Cementitious Composites December 1997. Materials Research Society, 1-3.
  • 39.Saikia, N., Ferreira, L., de Brito, J., 2012. Influence of curing conditions on the mechanical performance of concrete containing recycled plastic aggregate. Construction and Building Materiasl, 36, 196-204.
  • 40.Saikia, N., Silva, R., De Brito, J., 2013. Influence of curing conditions on the durability-related performance of concrete made with selected plastic waste aggregates, Cement and Concrete Composites, 35, 23-31.
  • 41.Saikia, N., de Brito, J., 2013. Waste polyethylene terephthalate as an aggregate in concrete. Materials Research, 16, 341-350.
  • 42.Song, P., Hwang, S., Sheu, B., 2005. Strength properties of nylon-and polypropylenefiber-reinforced concretes, Cem. Concr. Res. 35, 1546-1550.
  • 43.Rahmani, E., Dehestani, M., Beygi, M. H. A., Allahyari, H., Nikbin, I. M., 2013. On the mechanical properties of concrete containing waste PET particles, Construction and Building Materiasl, 47, 1302-1308
  • 44.Ulewicz, M., Halbiniak, J., 2016. Application of waste from utilitarian ceramics for production of cement mortar and concrete. Physicochemical Problems of Mineral Processing, 52, 1002-1010.
  • 45.Wang, Y., Zureick, A.-H., Cho, B.S., Scott, D., 1994. Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste. J. Mater. Sci., 29, 4191-4199.
  • 46.Wang, Y., Wu, H., Li, V. C., 2000. Concrete reinforcement with recycled fibers, J. Mater. Civ. Eng., 12, 314-319.
  • 47.Walczak, P., Małolepszy, J., Reben, M., Rzepa, K., 2015. Mechanical properties of concrete mortar based on mixture of CRT glass cullet and fluidized fly ash. Procedia Engineering, 108, 453-458.
  • 48.Xu, Y., Jiang, L., Xu, J., Li, Y., 2012. Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick, Construction and Building Materiasl, 27, 32-38.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5953143e-f8b1-41d2-bd96-5ab9b3742082
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.