PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monotonicity and non-monotonicity of domains of stochastic integral operators

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A Lévy process on Rd with distribution }μ at time 1 is denoted by Xμ = {Xμt}, If the improper stochastic integral [formula] of f with respect to Xμ is definable, its distribution is denoted by Ф(μ). The class of all infinitely divisible distributions μ on Rd such that Ф(μ) is definable is denoted by D(Φ). The class D(Φ), its two extensions Dc) and Des) (compensated and essential), and its restriction D0)(absolutely definable) are studied. It is shown that Des) is monotonic with respect to ∫, which means that |f2| ≤ |f1| implies Des∫1) ⊂ Des∫2). Further D0Φf is monotonic with respect to ∫ but neither D(Φ) nor D0)is monotonic with respect to ∫. Furthermore, there exist μ, ∫1 and ∫2 such that 0 ≤∫21, and μ∈D(Φ∫1), and μ ∉D(Φ∫2) An explicit example for this is related to some properties of a class of martingale Levy processes.
Rocznik
Strony
23--39
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Hachiman-yama 1101-5-103, Tenpaku-ku Nagoya, 468-0074 Japan
Bibliografia
  • [1] O.E. Barndorff-Nielsen, M. Maejima and K. Sato, Some classes of infinitely divisible distributions admitting stochastic integral representations, Bernoulli 12 (2006), pp. 1-33.
  • [2] A. Cherny and A. Shiryaev, On stochastic integrals up to infinity and predictable criteria for integrability, Lecture Notes in Math. No 1857, Springer, 2005, pp. 165-185.
  • [3] Z.J. Jurek, The class L,(Q) of probability measures on Banach spaces, Bull. Polish Acad. Sci. Math. 31 (1983), pp. 51-62.
  • [4] Z. J. Jurek and W. Vervaat, An integral representation far selfdecomposable Banach space valued random variables, 2. Wahrsch. Verw. Gebietc 62 (1983), pp. 247-262.
  • [5] S. Kwapień and W. A. Woyczyński, Random Series and Stochastic Integrals. Single and Multiple, Birkhäuser, Boston 1992.
  • [6] B. Rajput and J. Rosinski, Spectral representations of linfinitely divisible processes, Probab. Theory Related Fields 82 (1989), pp. 451-487.
  • [7] K. Sato, Class L of multivariate distributions and its subclasses, J. Multivariate Anal. 10 (1980), pp. 207-232.
  • [8] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge1999.
  • [9] K. Sato, Stochastic integrals in additive processes and application to semi-Lévy processes, Osaka J. Math. 41 (20041, pp. 211-236.
  • [10] K. Sato, Additive processes and stochastic integrals, Illinois J. Math. 50 (2006) (Doob Volume), pp. 825-851.
  • [11] K. Sato, Two families of improper stochastic integrals with respect to Lévy processes, Alea, Latin American Journal of Probability and Mathematical Statistics 1 (2006), pp. 47-87. http://alea.impa.br/english/
  • [12] K. Urbanik, Slowly varying sequences of random variables, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys, 20 (1972), pp. 679-682.
  • [13] K. Urbanik, Limit laws for sequences of normed sums satisfying some stability conditions, in: Multivariate Analysis - III, P. R. Krishnaiah (Ed.), Academic Press, New York, 1973, pp. 225-237.
  • [14] K. Urbanik and W, A Woyczynski, Random integrals and Orlicz spaces, Bull. Acad. Polon. Sci., Sir. Sci. Math. Astronom. Phys. 15 (1967), pp. 161-169.
  • [I5] S. J. Wolfe, A characterization of certain stochastic integrals in: Tenth Conference on Stochastic Processes and Their Applications. Contributed Papers, Stochastic Process. Appl. 12 (1982), p. 136.
  • [l6] S. J. Wolfe, On a continuous analogue of the stochastic difference equation X,= qX,- +B,, Stochastic Process. Appl. 12 (19821, pp. 301-312.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5950bb95-8e65-4960-a9d1-9f76c03a5b54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.