PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new classification of Nyirábrany, an ordinary chondrite from Hungary

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Nyirábrany meteorite is an ordinary chondrite from Hungary that fell in 1914 and, to date, has been studied very little. The aim of this work was to carry out a more detailed examination of this meteorite (using optical polarization microscope, energy dispersive X-ray spectroscopy and Raman micro spectroscopy) and re-investigate its previous classification as an LL5 type ordinary chondrite, moreover to complete its classification with a shock stage and a weathering grade. Our new results indicate that Nyirábrany could be a transition type between the L and LL chondrites. The main mineral phases of Nyirábrany are olivine, pyroxene and opaque minerals (e.g. Fe-Ni metal, troilite, chromite), minor constituents are plagioclase, Cl-apatite, cristobalite and glass. The Fe-Ni metal content (1.32 vol%) of Nyirábrany is typical of the LL group, the Fa content of olivines (26.71 mol%) is between the range of the L and LL types, while the Fs-content of the low-Ca pyroxenes (20.51 mol%) is typical of the L-chondrites. Chondrules appear in different sizes, mineral compositions and textures. The textural and mineralogical features (e.g. mostly homogeneous silicate minerals, dominance of clinopyroxenes, recrystallized matrix, well-defined chondrules) indicate petrological type 4-5 for Nyírábrány. The shock stage and the weathering grade of this meteorite were examined for the first time. On the basis of the observed optical and textural features of the olivine grains (e. g. sharp optical extinction, irregular and planar fractures) Nyirábrany has an S2 shock stage. About 30–40% of the opaque phases are affected by oxidation, which shows a W2 weathering grade.
Słowa kluczowe
Czasopismo
Rocznik
Strony
19--32
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Physics Institute, Space Research and Planetary Sciences, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
  • Research Center for Astronomy and Earth Sciences, Konkoly Astronomical Institute, Astrophysical and Geochemical Laboratory, H-1121 Budapest, Konkoly Thege Miklós út 15-17, Hungary
  • Department of Petrology and Geochemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest 1117, Hungary
Bibliografia
  • 1. Bridges J.C., Franchi I.A., Hutchison R., Alexander C.M. Od., Morse A.D., Pillinger C.T., Long V.P., 1994 – Petrographic, isotopic, and chemical studies of cristobalite and tridymitebearing chondrules and clasts in ordinary chondrites. Meteoritics 29, 448–449.
  • 2. Bridges J.C., Catling D.C., Saxton J.M., Swindle T.D., Lyon I.C., Grady M.M., 2001 – Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes. Space Science Reviews 96, 365–392.
  • 3. Cole K.J., Schultz L., Sipiera P.P., Welten K.C., 2007 – Kilabo and Bensour, Two LL6 Chondrite Falls from Africa with Very Similar Mineralogical Compositions but Different Cosmic-Ray Exposure Histories. 38th Lunar and Planetary Science Conference, League City, Texas, abstract no. 1477.
  • 4. Dodd R.T., 1981 – Meteorites – A Petrologic-Chemical Synthesis. Cambridge, New York.
  • 5. Fritz J., Greshake A., Stöffler D., 2003 – Launch Conditions for Martian Meteorites: Plagioclase as a Shock Pressure Barometer. 34th Annual Lunar and Planetary Science Conference, League City, Texas, abstract no. 1335.
  • 6. Gattacceca J., Rochette P., Bourot-Denise M., 2003 – Magnetic properties of a freshly fallen LL ordinary chondrite: the Bensour meteorite. Physics of the Earth and Planetary Interiors 140, 343–358.
  • 7. Gillet P., Chen M., Dubrovinsky L., El Goresy A., 2000 – Natural NaAlSi3O8-Hollandite in the Shocked Sixiangkou Meteorite. Science 287, 1633–1636.
  • 8. Gorin V.D., Alexeev V.A., 2006 – Radionuclides in the Bukhara CV3 and Kilabo LL6 chondrites. 37th Lunar and Planetary Science Conference, abstract no. 1034.
  • 9. Gucsik A., Nishido H., Ninagawa K., Okumura T., Toyoda S., 2010 – Micro-Raman spectroscopy of anomalous planar microsctructures in quartz from Mt. Oikeyama: discovery of a probable impact crater in Japan. Meteoritics & Planetary Science 45, 2022–2035.
  • 10. Gucsik A., Ming Z., Koeberl C., Salje E., Redfern S.A.T., Pruneda J.M., 2004 – Infrared and Raman spectroscopy of experimentally shocked zircon. Mineralogical Magazine 68, 801–811.
  • 11. Heaney P.J., Prewitt C.T., Gibbs G.V., 1994. Silica: behavior, geochemistry and physical applications. Reviews in Mineralogy and Geochemistry 29, Mineralogical Society of America.
  • 12. Hezel D.C., Herbert P., Lutz N., Frank E.B., 2006 – Origin of SiO2-rich components in ordinary chondrites. Geochimica et Cosmochimica Acta 70, 1548–1564.
  • 13. Huss G.R., Rubin A.E., Grossman J.N., 2006 – Thermal metamorphism in Chondrites. Meteorites and the Early Solar System II, Univ. of Arizona Press, Tucson, 943, 567–586.
  • 14. Jones R.H., McCubbin F.M., Dreeland L., Guan Y., 2011 – Phosphate minerals in type 4-6 LL chondrites: The nature of fluids on the LL chondrite parent body. 42nd Lunar and Planetary Science Conference, abstract no. 2464.
  • 15. Kayama M., Nishido H., Sekine T., Nakazato T., Gucsik A., Ninagawa K., 2012 – Shock barometer using cathodoluminescence of alkali feldspar. Journal of Geophysical Research 117(E9), CiteID E09004 , doi:10.1029/2011JE004025
  • 16. Kayama M., Gucsik A., Nishido H., Ninagawa K., Tsuchiyama A., 2009 – Cathodoluminescence and Raman Spectroscopic Characterization of Experimentally Shocked Plagioclase. AIP Proceedings of the International Conference. 1163,86–96.
  • 17. Koblitz J., 2005 – MetBase version 7.1 for Windows. CD-ROM.
  • 18. Kubo T., Kimura M., Kato T., Nishi M., Tominaga A., Kikegawa T., Funakoshi K.-I., 2010 – Plagioclase breakdown as an indicator for shock conditions of meteorites. Nature Geoscience 3, 41–45.
  • 19. Kubovics I., Ditrói-Puskás Z., Gál-Sólymos K., 2004 – Re-evaluation of meteorites from the Carpathian Basin: Preliminary results from Kisvarsány, Knyahinya, Mezőmadaras, Mike, Mócs and Nyírábrány. Acta Geologica Hungarica 47/2–3, 269–285.
  • 20. Lambert P., 1981 – Reflectivity applied to peak pressure estimates in silicates of shocked rocks. Journal of Geophysical Research, 86, 6187–6204.
  • 21. Lauretta D.S., Nagahara H., Alexander C.M. O’d, 2005 – Petrology and origin of Ferromagnesian Silicate Chondrules. In: Meteorites and the Early Solar System II, Lauretta D. S. and McSween Jr. H. Y. (eds.), University of Arizona Press, Tucson, 943, 431–459.
  • 22. Matsumoto T., Tsuchiyama A., Gucsik A., Noguchi R., Matsuno J., Nagano T., Imai Y., Shimada A., Uesugi M., Uesugi K., Nakano T., Takeuchi A., Suzuki,Y., Nakamura T., Noguchi T., Mukai T., Abe M., Yada T., Fujimura A., 2012 – Microstructures of particle surfaces of Itokawa regolith and LL chondrite fragments. 43rd Lunar and Planetary Science Conference, The Woodlands, Texas, abstract no. 1969.
  • 23. Miyamoto, M., Ohsumi, K., 1995 – Micro Raman spectroscopy of olivines in L6 chondrites: Evaluation of the degree of shock. Geophysical Research Letters 22, 437–440.
  • 24. Nakamura T., Noguchi T., Tanaka M., Zolensky M.E., Kimura M., Tsuchiyama A., Nakato A., Ogami T., Ishida H., Uesugi M., Yada T., Shirai K., Fujimura A., Okazaki R., Sandford S.A., Ishibashi Y., Abe M., Okada T., Ueno M., Mukai T., Yoshikawa M., Kawaguchi J., 2011 – Itokawa Dust Particles: A Direct Link Between S-Type Asteroids and Ordinary Chondrites. Science 333, 1113.
  • 25. Nagy S.,Okumura T., Gucsik A., 2008 – A cathodoluminescence characterization of shocked K-feldspar from Bosumtwi meteorite crater, 71st Annual Meteoritical Society Meeting, Matsue, Japan, abstract no. 5028.
  • 26. Nagano T., Tsuchiyama A., Shimobayashi N., Seto Y., Noguchi R., Imai Y., Matsumoto T., Matsuno J., 2012 – Homogeneity of LL5 and LL6 Chondrites in Relation to Hayabusa Sample Analysis. 43rd Lunar and Planetary Science Conference, The Woodlands, Texas, abstract no. 2500.
  • 27. Olsen E.J., Mayeda T.K., Clayton R.N., 1981 – Cristobalitepyroxene in an L6 chondrite – Implications for metamorphism. Earth and Planetary Science Letters 56, 82–88.
  • 28. Ostertag R., Stöffler D., Bischoff A., Palme H., Schultz L., Spettel B., Weber H., Weckwerth G., Wänke H., 1986 – Lunar meteorite Yamato-791197: Petrography, shock history and chemical composition. The Tenth Symposium on Antarctic Meteorites, Proceedings of the 1985 conference. Edited by Keizo Yanai, Hiroshi Takeda and Akira Shimoyama. Memoirs of the National Institute of Polar Research, Special Issue No. 41. Tokyo: National Institute of Polar Research, 17.
  • 29. Paton M., Muinonen K., Pesonen L.J., Kuosmanen V., Kohout T., Laitinen J., Lehtinen M., 2011 – A PCA study to determine how features in meteorite reflectance spectra vary with the samples’ physical properties. Journal of Quantitative Spectroscopy & Radiative Transfer 112, 1803–1814.
  • 30. Putnis A., Price G.D., 1979 – High-pressure (Mg, Fe)2SiO4 phases in the Tenham chondritic meteorite. Nature 280, 217–218.
  • 31. Reid A.M., 1997 – Workshop on Parent-body and Nebular Modification of Chondritic Materials, LPI Tech. Rept. 97-12 Part 1, 50–51.
  • 32. Rubin A.E., 1990 – Kamacite and olivine in ordinary chondrites: Intergroup and intragroup relationships. Geochimica et Cosmochimica Acta 54, 1217–1232.
  • 33. Rubin A.E., 2003 – Chromite-Plagioclase assemblages as a new shock indicator, implications for the shock and thermal histories of ordinary chondrites. Geochimica et Cosmochimica Acta 67, 2695–2709.
  • 34. Rubin A.E., 2004 – Postshock annealing and postannealing shock in equilibrated ordinary chondrites: Implications for the thermal and shock histories of chondritic asteroids. Geochimica et Cosmochimica Acta 68, 673–689.
  • 35. Stöffler D., 1967 – Deformation und Umwandlung von Plagioklas durch Stoßwellen in den Gesteinen des Nördlinger Ries. Contributions to Mineralogy and Petrology 16, 51–83.
  • 36. Stöffler D., Ostertag R., Jammes C., Pfannschmidt G., Sen Gupta P.R., Simon S.B., Papike J.J., Beauchamp R.H., 1986 – Shock metamorphism and petrography of the Shergotty achondrite. Geochimica et Cosmochimica Acta 50, 889–903.
  • 37. Stöffler D., Keil K., Scott E.R.D., 1991 – Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta 55, 3845–3867.
  • 38. Stöffler D., Langenhorst F., 1994 – Shock metamorphism of quartz in nature and experiment: I. Basic observations and theory, Meteoritics 29, 155–181.
  • 39. Sztrókay K.I., Wiik H.B., Buda Gy., 1977 – Ein Amphoterit- Chondrit aus Ungarn. Chemie der Erde 36, 287–298.
  • 40. Trigo-Rodríguez J.M., Llorca J., Rubin A.E., Grossman J.N., Sears D.W.G., Naranjo M., Bretzius S., Tapia M., Guarín Sepúlveda M.H., 2009 – The Cali meteorite fall: A new H/L ordinary chondrite. Meteoritics & Planetary Science 44, 211–220.
  • 41. Tsuchiyama A., Uesugi M., Uesugi K., Nakano T., Noguchi R., Matsumoto T., Matsuno J., Nagano T., Imai Y., Shimda A., Takeuchi A., Suzuki Y., Nakamura T., Noguchi T., Mukai T., Abe M., Yada T., Fujimura A., 2012 – Three-Dimensional Structures of Itokawa Particles Using Micro-Tomography: Comparison with LL5 and LL6 Chondrites. 43rd Lunar and Planetary Science Conference, The Woodlands, Texas, abstract no. 1870.
  • 42. Ustinova G.K., Alexeev V.A., Gorin V.D., 2008 – Orbits and Probable Parent Body of the Kilabo and Bensour LL6- Chondrites. 39th Lunar and Planetary Science Conference, League City, Texas, abstract no. 1011.
  • 43. van Schmus W.R., Wood J.A., 1967 – A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta 31, 747–765.
  • 44. Weisberg M.K., McCoy T.J., Krot A.N., 2005 – Systematics and Evaluation of Meteorite Classification. In: Meteorites and the early Solar System II. Eds: Lauretta D.S., McSween H.Y., Dotson R. joint book project of the University of Arizona Press and the Lunar and Planetary Institute.
  • 45. Wlotzka F., 1993 – A weathering scale for the ordinary chondrites (abstract). Meteoritics 28, 460.
  • 46. Yakame S., Uesugi M., Karouji Y., Ishibashi Y., Yada T., Okada T., Abe M., Fujimura A., 2012 – Observation of Shock Textures in Fragments of Kilabo (LL6). 75th Annual Meeting of the Meteoritical Society, Cairns, Australia. Meteoritics and Planetary Science 47, Supplement s1, A424 (5169.pdf ).
  • 47. Yates A.M., Tackett S.L., Moore C.B., 1968 – Chromium and manganese in chondrites. Chemical Geology 3, 313–322.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-594d69c8-4140-4a71-8c38-9b487e798d6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.