Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In order to improve the accuracy of machine tools, the use of additional active modules meeting the requirements of the “Plug & Produce” approach is focused. In this context one approach is the installation of a high precision positioning table for online compensation of machine tool deflections. For the model-based determination of the deflection, the knowledge of the effecting process force is crucial. This article examines the use of displacement sensors for force estimation in a piezoelectric system. The method is implemented on a high precision positioning table applicable in milling machine tools. In order to compensate nonlinear effects of piezoelectric actuators, a hysteresis operator is implemented. Experimental investigations are carried out to quantify the influence of preload stiffness, preload force and workpiece weight. Finally, a resolution d ≤ 78 N could be achieved and further improvements to meet the requirements for online compensation of machine tool deflection are discussed.
Czasopismo
Rocznik
Tom
Strony
24--34
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Institute for Machine Tools and Factory Management IWF, TU Berlin, Germany
- Institute for Production Systems and Design Technology IPK, Fraunhofer, Germany
autor
- Institute for Machine Tools and Factory Management IWF, TU Berlin, Germany
- Institute for Production Systems and Design Technology IPK, Fraunhofer, Germany
autor
- Institute for Machine Tools and Factory Management IWF, TU Berlin, Germany
autor
- Institute for Machine Tools and Factory Management IWF, TU Berlin, Germany
autor
- Institute for Machine Tools and Factory Management IWF, TU Berlin, Germany
Bibliografia
- [1] SPUR G., 1996, Die Genauigkeit von Maschinen: Eine Konstruktionslehre, Hanser, Munich, Germany.
- [2] SCHLEIPEN M., LÜDER A., SAUER O., FLATT H., JASPERNEITE J., 2015, Requirements and Concept for Plug-and-Work: Adaptivity in the context of Industry 4.0, Automatisierungstechnik, 63/10, 801–820.
- [3] HABIBI M., AREZOO B., VAHEBI NOJEDEH M., 2011, Tool Deflection and Geometrical Error Compensation by Tool Path Modification, International Journal of Machine Tools and Manufacture, 51/6, 439–449.
- [4] DENKENA B., MÖHRING H.-C., WILL J.C., 2007, Tool Deflection Compensation with an Adaptronic Milling Spindle, in: International Conference on Smart Machining Systems (ICSMS), Gaithersburg, USA.
- [5] HEO S., LEE M., KIM S.H., LEE W., MIN B.K., 2015, Compensation of Tool Deflection in Micromilling Using Workpiece Holder Control Device, Int. J. Precis. Eng. Manuf., 16/6, 1205–1208.
- [6] DENKENA B., BOUJNAH H., 2018, Feeling Machines for Online Detection and Compensation of Tool Deflection in Milling, CIRP Annals, 67/1, 423–426.
- [7] KALLAGE F., 2007, Einsatz Magnetischer Aktor- und Führungseinheiten zur Erhöhung der Bahngenauigkeit von Hochgeschwindigkeitsfräsmaschinen, Berichte aus dem IFW, PZH Produktionstechnisches Zentrum GmbH, Garbsen, Germany.
- [8] LISELI J.B., AGNUS J., LUTZ P., RAKOTONDRABE M., 2020, An Overview of Piezoelectric Self-Sensing Actuation for Nanopositioning Applications: Electrical Circuits, Displacement, and Force Estimation, IEEE Trans. Instrum. Meas., 69/1, 2–14.
- [9] RAKOTONDRABE M., IVAN I.A., KHADRAOUI S., LUTZ P., CHAILLET N., 2015, Simultaneous Displacement/Force Self-Sensing in Piezoelectric Actuators and Applications to Robust Control, IEEE/ASME Trans. Mechatron., 20/2, 519–531.
- [10] IVAN I.A., RAKOTONDRABE M., LUTZ P., CHAILLET N., 2009, Current Integration Force and Displacement Self-Sensing Method for Cantilevered Piezoelectric Actuators, The Review of Scientific Instruments, 80/12.
- [11] IVAN I.A., RAKOTONDRABE M., LUTZ P., CHAILLET N., 2009, Quasistatic Displacement Self-Sensing Method for Cantilevered Piezoelectric Actuators, The Review of Scientific Instruments, 80/6.
- [12] KAWAMATA A., KADOTA Y., HOSAKA H., MORITA T., 2008, Self-Sensing Piezoelectric Actuator Using Permittivity Detection, Ferroelectrics, 368/1, 194–201.
- [13] ISLAM M., SEETHALER R., MUMFORD D., 2011, Hysteresis Independent On-Line Capacitance Measurement for Piezoelectric Stack Actuators, 24th Canadian Conference on Electrical and Computer Engineering (CCECE), IEEE, 1149–1153.
- [14] ZARIF MANSOUR S., SEETHALER R., 2018, Simultaneous Quasi-Static Displacement and Force Self-Sensing of Piezoelectric Actuators by Detecting Impedance, Sensors and Actuators A: Physical, 274, 272–277.
- [15] KIANINEJAD K., THOM S., KUSHWAHA S., UHLMANN E., 2016, Add-on Error Compensation Unit as Sustainable Solution for Outdated Milling Machines, Procedia CIRP, 40, 174–178.
- [16] RAKOTONDRABE M., 2012, Classical Prandtl-Ishlinskii Modeling and Inverse Multiplicative Structure to Compensate Hysteresis in Piezoactuators, American Control Conference, Montréal, Canada.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-594b4ab1-6da4-4069-8193-85c5114fb900