PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Novel Method for the Prediction of the Impact Sensitivity of Quaternary Ammonium-based Energetic Ionic Liquids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Impact sensitivity is an important safety parameter for the assessment of the hazards of working with new energetic compounds including ionic molecular energetic materials. This paper introduces two novel simple correlations to assess the impact sensitivity of quaternary ammonium-based energetic ionic liquids, which are based on the elemental composition of cations and anions divided by the molecular weight of a desired ionic liquid as well as the contribution of specific cations and anions. For 72 ionic molecular systems as a training set, the root mean square (rms) deviations of predictions for these models relative to experiment are 11 J and 6 J, respectively. The reliability of the models has also been tested for a further three ionic compounds containing complex structures, which give rms deviations of 12 J and 6 J, respectively, with respect to the measured data. The results of the current study indicate that the accuracy of this novel method for the prediction of the impact sensitivity of quaternary ammonium-based energetic ionic liquids is not necessarily enhanced by greater complexity.
Rocznik
Strony
520--533
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
autor
  • Department of Civil Engineering, Isfahan University of Technology (IUT) P.O. Box 84155-198, Isfahan, Islamic Republic of Iran
autor
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
autor
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
autor
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
Bibliografia
  • [1] Sikder, A.; Maddala, G.; Agrawal, J.; Singh, H. Important Aspects of Behaviour of Organic Energetic Compounds: A Review. J. Hazard. Mater. 2001, 84(1): 1-26.
  • [2] Zeman, S.; Jungová, M. Sensitivity and Performance of Energetic Materials. Propellants Explos. Pyrotech. 2016, 41(3): 426-451.
  • [3] Agrawal, J. P. High Energy Materials: Propellants, Explosives and Pyrotechnics. WILEY-VCH, Weinheim 2010; ISBN 978-3-527-32610-5.
  • [4] Klapötke, T. M. Chemistry of High-energy Materials. 3rd ed., De Gruyter, Berlin/Boston 2015; ISBN 978-311027358-8.
  • [5] Keshavarz, M. H. A New General Correlation for Predicting Impact Sensitivity of Energetic Compounds. Propellants Explos. Pyrotech. 2013, 38(6): 754-760.
  • [6] Keshavarz, M. H.; Jaafari, M. Investigation of the Various Structure Parameters for Predicting Impact Sensitivity of Energetic Molecules via Artificial NeuralNetwork. Propellants Explos. Pyrotech. 2006, 31(3), 216-225.
  • [7] Keshavarz, M. H., Motamedoshariati, H.; Moghayadnia, R.; Ghanbarzadeh, M.; Azarniamehraban, J. Prediction of Sensitivity of Energetic Compounds with a New Computer Code. Propellants Explos. Pyrotech. 2014, 39(1): 95-101.
  • [8] Keshavarz, M. H.; Pouretedal, H. R. Simple Empirical Method for Prediction of Impact Sensitivity of Selected Class of Explosives. J. Hazard. Mater. 2005, 124(1):27-33.
  • [9] Keshavarz, M. H., Shokrolahi, A.; Esmailpoor, K.; Zali, A.; Hafizi, H. R.; Azamiamehraban, J. Recent Developments in Predicting Impact and Shock Sensitivities of Energetic Materials. Chin. J. Energ. Mater. 2008, 16(1): 113.
  • [10] Keshavarz, M. H.; Zali, A.; Shokrolahi, A. A Simple Approach for Predicting Impact Sensitivity of Polynitroheteroarenes. J Hazard. Mater. 2009, 166(2): 1115-1119.
  • [11] Kim, H.; Hwang, S.-N.; Lee, S. K. QSPR Analysis for the Prediction of Impact Sensitivity of High Energy Density Materials (HEDM). Chin. J. Energ. Mater.2012, 275-275.
  • [12] Politzer, P.; Murray, J. S. Impact Sensitivity and Crystal Lattice Compressibility/Free Space. J. Mol. Model. 2014, 20(5): 1-8.
  • [13] Politzer, P.; Murray, J. S., Impact Sensitivity and the Maximum Heat of Detonation. J. Mol. Model. 2015, 21(10): 1-11.
  • [14] Pospíšil, M.; Vávra, P.; Concha, M. C.; Murray, J. S.; Politzer, P. Sensitivity and the Available Free Space per Molecule in the Unit Cell. J.Mol. Model. 2011, 17(10):2569-2574.
  • [15] Rice, B. M.; Hare, J. J. A Quantum Mechanical Investigation of the Relation Between Impact Sensitivity and the Charge Distribution in Energetic Molecules. J. Phys. Chem. A 2002, 106(9): 1770-1783.
  • [16] Politzer, P.; Lane, P.; Murray, J. S. Sensitivities of Ionic Explosives. Mol. Phys. 2016, 1-13.
  • [17] Kamlet, M. The Relationship of Impact Sensitivity with Structure of Organic High Explosives. I. Polynitroaliphatic explosives. Symposium (International) on Detonation, 6th, Coronads, CA 1976, 69-72.
  • [18] Kamlet, M.; Adolph, H. The Relationship of Impact Sensitivity with Structure of Organic High Explosives. II. Polynitroaromatic Explosives. Propellants and Explosives 1979, 4: 30-34.
  • [19] Keshavarz, M. H.,; Pouretedal, H. R.; Semnani, A. Novel Correlation for Predicting Impact Sensitivity of Nitroheterocyclic Energetic Molecules. J. Hazard. Mater. 2007, 141(3): 803-807.
  • [20] Zohari, N.; Seyed-Sadjadi, S. A.; Marashi-Manesh, S. The Relationship between Impact Sensitivity of Nitroaromatic Energetic Compounds and Their Electrostatic Sensitivity. Cent. Eur. J. Energ. Mater. 2016, 13(2): 427-443.
  • [21] Keshavarz, M. H.; Rahimi, R.; Akbarzadeh, A. R. Two Novel Correlations for Assessment of Crystal Density of Hazardous Ionic Molecular Energetic Materials Using their Molecular Structures. Fluid Phase Equilib. 2015, 402: 1-8.
  • [22] Keshavarz, M. H.; Pouretedal, H. R.; Saberi, E. A Simple Method for Prediction of Density of Ionic Liquids through their Molecular Structure. J. Mol. Liquids 2016, 216: 732-737.
  • [23] Palm, W. J. Introduction to MATLAB 7 for Engineers. McGraw-Hill, New York 2005; ISBN10: 0072922427.
  • [24] Agrawal, J. P.; Hodgson, R. Organic Chemistry of Explosives. John Wiley & Sons 2007; ISBN-10: 0470029676.
  • [25] Chioato, Z. L.; Klapötke, T. M.; Mieskes, F.; Stierstorfer, J.; Weyrauther, M. (Picrylamino)‐1,2,4‐triazole Derivatives – Thermally Stable Explosives. Eur. J. Inorg. Chem. 2016, 2016(7): 956-962.
  • [26] Klapötke, T. M.; Stierstorfer, J.; Weyrauther, M.; Witkowski, T. G. Synthesis and Investigation of 2,6‐Bis (picrylamino)‐3,5‐dinitro‐pyridine (PYX) and Its Salts. Chem. − Eur. J. 2016, 22(25): 8619-8626.
  • [27] Klapötke, T. M., Mieskes, F.; Stierstorfer, J.; Weyrauther, M. Studies on Energetic Salts Based on (2, 4, 6‐Trinitrophenyl) guanidine. Propellants Explos. Pyrotech. 2016, 41(2): 217-222.
  • [28] Karaghiosoff, K.; Klapötke, T. M.; Miró Sabaté, C. Energetic Silver Salts with 5‐Aminotetrazole Ligands. Chem. – Eur. J. 2009, 15(5): 1164-1176.
  • [29] Zhang, Q.; Shreeve, J. M. Energetic Ionic Liquids as Explosives and Propellant Fuels: a New Journey of Ionic Liquid Chemistry. Chemical Reviews 2014, 114(20): 10527-10574.
  • [30] Gao, H.; Joo, Y. H.; Twamley, B.; Zhou, Z.; Shreeve, J. M. Hypergolic Ionic Liquids with the 2, 2‐Dialkyltriazanium Cation. Angew. Chem. 2009, 121(15): 2830-2833.
  • [31] He, L.; Tao, G. H.; Parrish, D. A.; Shreeve, J. M. Nitrocyanamide‐Based Ionic Liquids and Their Potential Applications as Hypergolic Fuels. Chem. – Eur. J. 2010, 16(19): 5736-5743.
  • [32] Sebastiao, E.; Cook, C.; Hu, A.; Murugesu, M. Recent Developments in the Field of Energetic Ionic Liquids. J. Mater. Chem. A 2014, 2(22): 8153-8173.
  • [33] Fischer, D.; Klapötke, T. M.; Stierstorfer, J. 1,5‐Di (nitramino) Tetrazole: High Sensitivity and Superior Explosive Performance. Angew. Chem., Int. Ed. 2015, 54(35): 10299-10302.
  • [34] Izsák, D.; Klapötke, T. M.; Lutter, F. H.; Pflüger, C. Tailoring the Energetic Properties of 5‐(5‐Amino‐1,2,3‐triazol‐4‐yl) Tetrazole and Its Derivatives by Salt Formation: From Sensitive Primary to Insensitive Secondary Explosives. Eur. J. Inorg. Chem. 2016, 2016(11): 1720-1729.
  • [35] Fischer, D.; Klapötke, T. M.; Stierstorfer, J. 5‐Nitriminotetrazole 1‐Oxide: An Exciting Oxygen‐and Nitrogen‐Rich Heterocycle. Eur. J. Inorg. Chem. 2015, 2015(28): 4628-4632.
  • [36] Klapötke, T. M.; Leroux, M.; Schmid, P. C.; Stierstorfer, J. Energetic Materials Based on 5,5′‐Diamino‐4,4′‐dinitramino‐3,3′‐bi‐1,2,4‐triazole. Chemistry – An Asian Journal 2015, 11(6): 844-851.
  • [37] Klapötke, T. M.; Pflüger, C.; Reintinger, M. W. Energetic Materials Based on 5,7‐Dinitrobenzotriazole and 4,6‐Dinitrobenzotriazol‐3‐ium 1‐Oxide Derivatives. Eur. J. Inorg. Chem. 2016, 2016(1): 138-147.
  • [38] Hafner, K.; Klapötke, T. M.; Schmid, P. C.; Stierstorfer, J. Synthesis and Characterization of Asymmetric 1,2‐Dihydroxy‐5,5′‐bitetrazole and Selected Nitrogen‐Rich Derivatives. Eur. J. Inorg. Chem. 2015, 2015(17): 2794-2803.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5949c46e-b662-4a37-9b80-c94d3d98018c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.