PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Activated carbons from common nettle as potential adsorbents for CO2 capture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Activated carbons (ACs) prepared from common nettle (Urtica Dioica L.) were studied in terms of carbon dioxide adsorption. ACs were prepared by KOH chemical activation in a nitrogen atmosphere at temperatures (ranging from 500 to 850°C). The pore structure and the surface characterization of the ACs were specified based on adsorption-desorption isotherms of nitrogen measured at –196°C and carbon dioxide at 0°C. The specific surface area was calculated according to the BET equation. The pore volume was estimated using the DFT method. The highest values of the specific surface area (SSA) showed activated carbons produced at higher carbonization temperatures. All samples revealed presence of micropores and mesopores with a diameter range of 0.3–10 nm. The highest value of the CO2 adsorption, 4.22 mmol/g, was found for the material activated at 700°C.
Rocznik
Strony
59--66
Opis fizyczny
Bibliogr. 97 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Inorganic Chemical Technology and Environment Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Inorganic Chemical Technology and Environment Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Inorganic Chemical Technology and Environment Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Michalkiewicz, B., Sreńscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.
  • 2. Michalkiewicz, B. & Koren, Z.C. (2015). Zeolite membranes for hydrogen production from natural gas: state of the art. J. Porous Mat. 22, 635–646. DOI: 10.1007/s10934-015-9936-6.
  • 3. Michalkiewicz, B. (2006). Esterification of methane as the first stage in converting the natural gas to methanoll. Przem. Chem. 85, 620–623.
  • 4. Michalkiewicz, B. & Kałucki, K. (2002). Direct conversion of methane into methanol formaldehyde and organic acids. Przem. Chem. 81, 165–170.
  • 5. Lubkowski, K., Arabczyk, W., Grzmil, B., Michalkiewicz, B. & Pattek-Jańczyk, A. (2007). Passivation and oxidation of an ammonia iron catalyst. Appl. Catal., A. 329, 137–147. DOI: 10.1016/j.apcata.2007.07.006.
  • 6. Michalkiewicz, B. & Opaczewska, L. (2003). Novel condensed-phase catalysts for oxidation of methane. Przem. Chem. 82, 629–630.
  • 7. Enger, B.C., Lødeng, R. & Holmen, A. (2008). A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl. Catal., A. 346, 1–27. DOI: 10.1016/j.apcata.2008.05.018.
  • 8. Michalkiewicz, B., Sreńscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap. – Chem. Zvesti. 62, 106–113. DOI: 10.2478/s11696-007-0086-4.
  • 9. Michalkiewicz, B. (2005). Kinetics of partial methane oxidation process over the Fe-ZSM-5 catalysts. Chem. Pap. – Chem. Zvesti. 59, 403–408. DOI: 10.1016/j.apcata.2004.09.005.
  • 10. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Appl. Catal., A. 277, 147–153. DOI: 10.1016/j.apcata.2004.09.005.
  • 11. Markowska, A. & Michalkiewicz, B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. – Chem. Zvesti. 63, 105–110. DOI: 10.2478/s11696-008-0100-5.
  • 12. Michalkiewicz, B., Ziebro, J. & Sreńscek-Nazzal, J. (2006). Direct oxidation of methane to formaldehyde. Przem. Chem. 85, 624–626.
  • 13. Kałucki, K., Michalkiewicz, B., Morawski A.W., Arabczyk, W. & Ziebro, J. (1995). Oxidation of methane to formaldehyde. Przem. Chem. 74, 135–136.
  • 14. Galadim, A. & Muraza, O. (2016). Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: A review. J. Ind. Eng. Chem. 37, 1–13, DOI: 10.1016/j.jiec.2016.03.027.
  • 15. Corredor, E.C., Chitta, P. & Deo, M.D. (2019). Techno-economic evaluation of a process for direct conversion of methane to aromatics. Fuel Process. Technol. 183, 55–61, DOI: 10.1016/j.fuproc.2018.05.038.
  • 16. Michalkiewicz, B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal., A. 394, 266–268. DOI: 10.1016/j.apcata.2011.01.014.
  • 17. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal., A. 307, 270–274. DOI: 10.1016/j.apcata.2006.04.006.
  • 18. Michalkiewicz, B. & Kosowski, P. (2007). The selective catalytic oxidation of methane to methyl bisulfate at ambient pressure. Catal. Commun. 8, 1939–1942. DOI: 10.1016/j.catcom.2007.03.014.
  • 19. Michalkiewicz, B., Jarosińska, M. & Łukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J . 154, 156–161. DOI: 10.1016/j.cej.2009.03.046.
  • 20. Michalkiewicz, B. (2006). Methane esterification in oleum. Chem. Pap. - Chem. Zvesti. 60, 371–374. DOI: 10.2478/s11696-006-0067-z.
  • 21. Michalkiewicz, B. & Balcer, S. (2012). Bromine catalyst for the methane to methyl bisulfate reaction. Pol. J. Chem. Technol. 14, 19–21. DOI: 10.2478/v10026-012-0096-z.
  • 22. Jarosińska, M., Lubkowski, K., Sośnicki, J.G. & Michalkiewicz, B. (2008). Application of Halogens as Catalysts of CH 4 Esterification. Catal. Lett. 126, 407–412. DOI: 10.1007/s10562-008-9645-8.
  • 23. Michalkiewicz, B. & Ziebro, J. (2004). Non-classical prospective methods of obtaining methanol and formaldehyde. Chem. Process. Eng-Inz. 25, 1973–1980.
  • 24. Michalkiewicz, B., Kałucki, K. & Sośnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.
  • 25. Michalkiewicz, B., Ziebro, J. & Tomaszewska, M. (2006). Preliminary investigation of low pressure membrane distillation of methyl bisulphate from its solutions in fuming sulphuric acid combined with hydrolysis to methanol. J. Membr. Sci. 286, 223–227. DOI: 10.1016/j.memsci.2006.09.039.
  • 26. Michalkiewicz, B. (2003). Methane conversion to methanol in condensed phase. Kinet. Catal. 44, 801–805. DOI: 10.1023/B:KICA.0000009057.79026.0b.
  • 27. Michalkiewicz, B. (2008). Assessment of the possibility of the methane to methanol transformation. Pol. J. Chem. Technol. 10, 20–26. DOI: 10.2478/v10026-008-0023-5.
  • 28. Michalkiewicz, B. (2003). Partial oxidation of methane to oxygenates. Przem. Chem. 82, 627–628.
  • 29. Michalkiewicz, B. & Majewska, J. (2014). Diameter-controlled carbon nanotubes and hydrogen production. Int. J. Hydrogen Energy 39, 4691–4697. DOI: 10.1016/j.ijhydene.2013.10.149.
  • 30. Majewska, J. & Michalkiewicz, B. (2016). Preparation of Carbon Nanomaterials over Ni/ZSM-5 Catalyst Using Simplex Method Algorithm. Acta Phys. Pol., A. 129, 153–157. DOI: 10.12693/APhysPolA.129.153.
  • 31. Majewska, J. & Michalkiewicz, B.(2013) Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A: Mater. Sci. Process. 111, 1013–1016. DOI: 10.1007/s00339-013-7698-z.
  • 32. Ziebro, J., Skorupińska, B., Kądziołka, G. & Michalkiewicz, B. (2013). Synthesizing Multi-walled Carbon Nanotubes over a Supported-nickel Catalyst. Fuller. Nanotub. Car. N. 21, 333–345. DOI: 10.1080/1536383X.2011.613543.
  • 33. Majewska, J. & Michalkiewicz, B. (2016). Production of hydrogen and carbon nanomaterials from methane using Co/ZSM-5 catalyst. Int. J. Hydrogen Energy 41, 8668–8678. DOI: 10.1016/j.ijhydene.2016.01.097.
  • 34. Ziebro, J., Łukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21, 1–6. DOI: 10.1088/0957-4484/21/14/145308.
  • 35. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. New Carbon Mater. 29, 102–108. DOI: 10.1016/S1872-5805(14)60129-3.
  • 36. Ziebro, J., Łukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloys Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.
  • 37. Lunsford, J.H. (2000). Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal. Today. 63, 165–174. DOI: 10.1016/S0920-5861(00)00456-9.
  • 38. Michalkiewicz, B., Majewska, J., Kądziołka, G., Bubacz, K., Mozia, S. & Morawski, A. W. (2014). Reduction of CO 2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. J. CO2 Util. 5, 47–52. DOI: 10.1016/j.jcou.2013.12.004.
  • 39. Wałęsa-Chorab, M., Patroniak, V., Kubicki, M., Kądzioł-ka, G., Przepiórski, J. & Michalkiewicz, B. (2012). Synthesis, structure, and photocatalytic properties of new dinuclear helical complex of silver(I) ions. J. Catal. 291, 1–8. DOI: 10.1016/j.jcat.2012.03.025.
  • 40. Marcinkowski, D., Wałęsa-Chorab, M., Patroniak, V., Kubicki, M., Kądziołka, G. & Michalkiewicz, B. (2014). A new polymeric complex of silver(I) with a hybrid pyrazine-bipyridine ligand - synthesis, crystal structure and its photocatalytic activity. New J. Chem. 38, 604–610. DOI: 10.1039/c3nj01187a.
  • 41. Marcinkowski, D., Wałęsa-Chorab, M., Kubicki, M., Hoffmann, M., Kądziołka, G., Michalkiewicz, B. & Patroniak, V. (2015). A new 2,6-di(anthracen-9-yl)pyridine ligand and its complexes with Ag(I) ions: Synthesis, structure and photocatalytic activity. Polyhedron 90, 91–98. DOI: 10.1016/j.poly.2014.12.049.
  • 42. Gray, M.L., Hoffman, J.S., Hreha, D.C., Fauth, D.J., Hedges, S.W., Champagne, K.J. & Pennline, H.W. (2009). Parametric study of solid amine sorbents for the capture of carbon dioxide. Energy Fuels 23, 4840–4844. DOI:10.1021/ef9001204.
  • 43. Sayari, A., Belmabkhout, Y. & Serna-Guerrero, R. (2011). Flue gastreatment via CO 2 adsorption. Chem. Eng. J. 171, 760−774. DOI: 10.1016/j.cej.2011.02.007.
  • 44. Młodzik, J., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2016). Activated Carbons from Molasses as CO 2 Sorbents. Acta Phys. Pol. A. 129, 402–404. DOI: 10.12693/APhysPolA.129.402.
  • 45. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R., Gęsikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modification of Commercial Activated Carbons for CO 2 Adsorption. Acta Phys. Pol. A. 129, 394–401. DOI: 10.12693/APhysPolA.129.394.
  • 46. Gęsikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A. W. & Wróbel, R. J. (2017). Improvement of CO 2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309, 159–171. DOI: 10.1016/j.cej.2016.10.005.
  • 47. Glonek, K., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO 2 as the Adsorption of CO 2 . Acta Phys. Pol. A. 129, 158–161. DOI: 10.12693/APhysPolA.129.158.
  • 48. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data. 60, 3148–3158. DOI: 10.1021/acs.jced.5b00294.
  • 49. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO 2 capture and effective micropores at different conditions. J. CO2 Util. 18, 73–79. DOI: 10.1016/j.jcou.2017.01.006.
  • 50. Lendzion-Bieluń, Z., Czekajło, Ł., Sibera, D., Moszyński, D., Sreńscek-Nazzal, J., Morawski, A.W., Wróbel, R.J., Michalkiewicz, B., Arabczyk, W. & Narkiewicz, U. (2018). Surface characteristics of KOH-treated commercial carbons applied for CO 2 adsorption. Adsorpt. Sci. Technol. 36, 478–492. DOI: 10.1177/0263617417704527.
  • 51. Zgrzebnicki, M., Krauze, N., Gęsikiewicz-Puchalska, A., Kapica-Kozar, J., Piróg, E., Jędrzejewska, A., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wróbel, R.J. (2017). Impact on CO 2 Uptake of MWCNT after Acid Treatment Study. J. Nanomater. , 1–11. DOI: 10.1155/2017/7359591.
  • 52. Gong, J., Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X. & Tang, T. (2014). Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. ASC Sustain. Chem. Eng. 2, 2837–2844. DOI: 10.1021/sc500603h.
  • 53. Choma, J., Osuchowski, Ł., Marszewski, M., Dziura, A. & Jaroniec, M. (2016). Developing microporosity in Kevlar1-derived carbon fibers by CO2 activation for CO2 adsorption. J.CO2 Util. 16, 17–22. DOI: 10.1016/j.jcou.2016.05.004.
  • 54. Marszewska, J. & Jaroniec, M. (2017). Tailoring porosity in carbon spheres for fast carbon dioxide adsorption. J. Colloid Interface Sci. 487, 162–174. DOI: 10.1016/j.jcis.2016.10.033.
  • 55. Harlick, P.J.E. & Tezel, F.H. (2004). An experimental adsorbent screening study for CO 2 removal from N2. Micropor. Mesopor. Mat. 76, 71–79. DOI: 10.1016/j.micromeso.2004.07.035.
  • 56. Walton, K.S., Abney, M.B. & LeVan, D.M. (2006). CO 2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Micropor. Mesopor. Mat. 91, 78–84. DOI: 10.1016/j.micromeso.2005.11.023.
  • 57. Millward, A.R. & Yaghi, O.M. (2005). Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999. DOI: 10.1021/ja0570032.
  • 58. Cheng, Y., Rondo, A., Noguchi, H., Kajiro, H., Urita, K., Ohba, T., Kaneko, K. & Kanoh, H. (2009). Reversible structural change of Cu-MOF on exposure to water and its CO 2 adsorptivity. Langmuir 25, 4510–4513. DOI: 10.1021/la803818p.
  • 59. Kapica-Kozar, J., Piróg, E., Kusiak-Nejman, E., Wróbel, R.J., Gęsikiewicz-Puchalska, A., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2017). Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New J. Chem. 41, 1549–1557. DOI: 10.1039/c6nj02808j.
  • 60. Kapica-Kozar, J., Piróg, E., Wróbel, R.J., Mozia, S., Kusiak-Nejman, E., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2016). TiO 2 /titanate composite nanorod obtained from various alkali solutions as CO 2 sorbents from exhaust gases. Micropor. Mesopor. Mat. 231, 117–127. DOI: 10.1016/j.micromeso.2016.05.024.
  • 61. Kapica-Kozar, J., Michalkiewicz, B., Wróbel, R.J., Mozia, S., Piróg, E., Kusiak-Nejman, E., Serafin, J., Morawski, A.W. & Narkiewicz, U. (2017). Adsorption of carbon dioxide on TEPA-modified TiO 2 /titanate composite nanorods. New J. Chem. 41, 7870–7885. DOI: 10.1039/c7nj01549f.
  • 62. Yu-Dong D., Gan S., Qiang L., Xun Z. & Rong C. (2016). Bench scale study of CO 2 adsorption performance of MgO in the presence of water vapour, Energy 112, 101–110. DOI: 10.1016/j.energy.2016.06.064.
  • 63. Ferreira, D., Magalhaes, R., Taveira, P. & Mendes, A. (2011). Effective adsorption equilibrium isotherms and breakthroughs of water vapor and carbon dioxide on different adsorbents. Ind. Eng. Chem. Res. 50, 10201–10210. DOI: 10.1021/ie2005302.
  • 64. Samanta, A., Zhao, A., Shimizu, G.K.H., Sarkar, P. & Gupta, R. (2012). Post-combustion CO 2 capture using solid sorbents: A review. Ind. Eng. Chem. Res. 51, 1438–1463. DOI: 10.1021/ie200686q.
  • 65. Kwiatkowski, M. & Broniek, E. (2013). Application of the LBET class adsorption models to the analysis of microporous structure of the active carbons produced from biomass by chemical activation with the use of potassium carbonate. Colloids Surf., A. 427, 47–52. DOI: 10.1016/j.colsurfa.2013.03.002.
  • 66. Kwiatkowski, M. (2008). Employing the new computer LBET class models with multivariant fitting to the analysis of single and double adsorption isotherms generated by the selected classical equations in different relative pressures. J. Math. Chem. 42, 815–835. DOI: 10.1007/s10910-006-9143-4.
  • 67. Kwiatkowski, M. (2007). Comparison of the evaluation reliability of microporous structure parameters by employing single and double adsorption isotherms. Colloids Surf., A. 294, 92–101. DOI: 10.1016/j.colsurfa.2006.07.050.
  • 68. Kwiatkowski, M. (2009). Computer analysis of the microporous structure of activated carbon fibres using the fast multivariant identification procedure of adsorption system parameters. Colloids Surf., A. 330, 266–275. DOI: 10.1007/s00894-007-0260-1.
  • 69. Sreńscek-Nazzal, J. & Michalkiewicz, B. (2011) The simplex optimization for high porous carbons preparation. Pol. J. Chem. Technol. 13, 63–70. DOI: 10.2478/v10026-011-0051-4.
  • 70. Kwiatkowski, M., Sreńscek-Nazzal, J. & Michalkiewicz, B. (2017) An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12. Adsorption. 23, 551–561. DOI: 10.1007/s10450-017-9867-4.
  • 71. Sreńscek-Nazzal, J., Kamińska, W., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind. Crop. Prod. 47, 153–159. DOI: 10.1016/j.indcrop.2013.03.004.
  • 72. Kwiatkowski, M. (2013). Methane storage in carbonaceous porous materials. Przem. Chem. 92, 629–633.
  • 73. Kwiatkowski, M. & Duda, J.T. (2014). Fast multivariant analysis of the adsorption isotherm of the carbon dioxide and methane. Przem. Chem. 93, 878–881.
  • 74. Wenelska, K., Michalkiewicz, B., Chen, X. & Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity. Energy 75, 549–554. DOI: 10.1016/j.energy.2014.08.016.
  • 75. Wenelska, K., Michalkiewicz, B., Gong, J., Tang, T., Kaleńczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. Int. J. Of Hydrogen Energy 38, 16179–16184. DOI: 10.1016/j.ijhydene.2013.10.008.
  • 76. Zielińska, B., Michalkiewicz, B., Chen, X., Mijowska, E. & Kaleńczuk, R.J. (2016). Pd supported ordered mesoporous hollow carbon spheres (OMHCS) for hydrogen storage. Chem. Phys. Lett. 647, 14–19. DOI: 10.1016/j.cplett.2016.01.036.
  • 77. Zielińska, B., Michalkiewicz, B., Mijowska, E. & Kaleń-czuk, R.J. (2015). Advances in Pd Nanoparticle Size Decoration of Mesoporous Carbon Spheres for Energy Application. Nanoscale Res. Lett. 10, 1–7. DOI: 10.1186/s11671-015-1113-y.
  • 78. Baca, M., Cendrowski, K., Banach, P., Michalkiewicz, B., Mijowska, E., Kaleńczuk, R.J. & Zielińska, B. (2017). Effect of Pd loading on hydrogen storage properties of disordered mesoporous hollow carbon spheres. Int. J. Hydrogen Energy 42, 30461–30469. DOI: 10.1016/j.ijhydene.2017.10.146.
  • 79. Baca, M., Cendrowski, K., Kukułka, W., Bazarko, G., Moszyński, D., Michalkiewicz, B., Kaleńczuk, R.J. & Zielińska, B. (2018). A Comparison of Hydrogen Storage in Pt, Pd and Pt/Pd Alloys Loaded Disordered Mesoporous Hollow Carbon Spheres. Nanomaterials 8, 1–13. DOI: 10.3390/nano8090639.
  • 80. Glonek, K., Wróblewska, A., Makuch, E., Ulejczyk, B., Krawczyk, K., Wróbel, R.J., Koren, Z.C. & Michalkiewicz, B. (2017). Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma. Appl. Surf. Sci. 420, 873–881. DOI: 10.1016/j.apsusc.2017.05.136.
  • 81. Wróblewska, A., Miądlicki, P., Sreńscek-Nazzal, J., Sadłowski, M., Koren, Z.C. & Michalkiewicz, B. (2018). Alpha-pinene isomerization over Ti-SBA-15 catalysts obtained by the direct method: The influence of titanium content, temperature, catalyst amount and reaction time. Micropor. Mesopor. Mat. 258, 72–82. DOI: 10.1016/j.micromeso.2017.09.007.
  • 82. Malko, M., Antosik, A.K., Wróblewska, A., Czech, Z., Wilpiszewska, K., Miądlicki, P. & Michalkiewicz, B. (2017). Montmorillonite as the catalyst in oxidation of limonene with hydrogen peroxide and in isomerization of limonene. Pol. J. Chem. Technol. 19, 50–58. DOI: 10.1515/pjct-2017-0067.
  • 83. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z.C. & Michalkiewicz, B. (2017). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. 147, 150–160. DOI: 10.1007/s10562-016-1910-7.
  • 84. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268, 111–120. DOI: 10.1016/j.cattod.2015.11.010.
  • 85. Wróblewska, A., Makuch, E., Młodzik, J. & Michalkiewicz, B. (2017). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth. 6, 397–401. DOI: 10.1515/gps-2016-0148.
  • 86. Yahya, M.A., Al-Qodah, Z. & Ngah, C.W.Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sust. Energ. Rev. 46, 218–235.
  • 87. Grycova, B., Koutnik, I. & Pryszcz, A. (2016). Pyrolysisprocess for the treatment of food waste. Bioresource Technol. 218, 1203–1207. DOI:10.1016/j.biortech.2016.07.064
  • 88. Lestinsky, P., Grycova, B., Pryszcz, A., Martaus, A. & Matejova, L. (2017). Hydrogen production from microwave catalytic pyrolysis of spruce sawdust. J. Anal. Appl. Pyrol. 124, 175–179. DOI:10.1016/j.jaap.2017.02.008.
  • 89. Grycova, B., Koutnik, I, Pryszcz, A. & Kaloc, M. (2016). Application of pyrolysis process in processing of mixed food wastes. Pol. J. Chem. Technol. 18, 19–23. DOI:10.1515/pjct-2016-0004.
  • 90. Grycova, B., Pryszcz, A., Lestinsky, P. & Chamradova, K. (2017). Preparation and characterization of sorbents from food waste. Green Process. Synth. 6, 287–293. DOI:10.1515/gps-2016-0182.
  • 91. Grycova, B., Pryszcz, A., Lestinsky, P. & Chamradova, K. (2018). Influence of potassium hydroxide and method of carbonization treatment in garden and corn waste microwave pyrolysis. Biomass Bioenerg. 118, 40–45. DOI:10.1016/j.biombioe.2018.07.022.
  • 92. Hernandez, J.R., Aquino F.L., Capareda, S.C. (2007). Activated carbon production from pyrolysis and steam activation of cotton gin trash. Am. Soc. Agric. Biol. Eng. , 1–8.
  • 93. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069. DOI: 10.1515/pac-2014-1117.
  • 94. Sing, K.S.W. & Williams, R.T. (2004) Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorpt. Sci. Technol. 22, 773–782. DOI: 10.1260/0263617053499032.
  • 95. Jagiello, J. & Thommes, M. (2004). Comparison of DFT characterization methods based on N 2 , Ar, CO 2 , and H 2 adsorption applied to carbons with various pore size distributions. Carbon 42, 1227–1232. DOI: 10.1016/j.carbon.2004.01.022.
  • 96. Presser, V., McDonough, J., Yeon S.H. & Gogotsi Y. (2011). Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ. Sci. 4, 3059–3066. DOI: 10.1039/C1EE01176F.
  • 97. Deng, S., Wei, H., Chen, T., Wang, B., Huang, J. & Yu, G. (2014). Superior CO 2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures,. Chem. Eng. J. 253, 46–54. DOI: 10.1016/j.cej.2014.04.115.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59410e3c-3ad9-47f6-8f97-18ae72e0edcc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.