Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Influence of surface strengthening agent on the properties of autoclaved aerated concrete
Języki publikacji
Abstrakty
W pracy przedstawiono wyniki badań dotyczące aplikacji domieszki wzmacniającej w postaci szkła wodnego na autoklawizowanym betonie komórkowym (ABK) z zastosowaniem metody impregnacji. Do obserwacji budowy faz, mikrostruktury, obrazu przestrzennego oraz budowy porów w ABK przed i po wzmocnieniu zastosowano rentgenowską tomografię komputerową. Wyniki wykazały, że wytrzymałości na ściskanie i zginanie wzmocnionego ABK wzrosły kolejno o 33,9% and 22,9%. Przewodność cieplna oraz gęstość wzmocnionego ABK wzrosły natomiast o 7,05% oraz 24,5%. Domieszka wzmacniająca przeniknęła wewnątrz ABK na głębokość 3~5 mm. Wyniki wykazały, że działanie domieszki wzmacniającej polega na utworzeniu powłoki wypełniającej defekty powierzchniowe.
In this study, autoclaved aerated concrete (AAC) were strengthened by water glass as a surface strengthening agent with impregnation method. The X-ray computed tomography (XCT) were applied to analyze the phase structure, microstructure and three-dimensional shape and pore structure of AAC before and after strengthening. The results showed that the compressive and bending strength of AAC were increased by 33.9% and 22.9%, respectively. The thermal conductivity and dry density are increased by 7.05% and 24.5%, respectively. The surface strengthening agent migrated on the depth of 3~5 mm from the surface of AAC. The results show that the surface strengthening agent action consisted in the film formation and the defect filling.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
334--341
Opis fizyczny
Bibliogr. 18 poz., il., tab.
Twórcy
autor
- Jiangsu Key Laboratory for Construction Materials, Southeast University, Nanjing, China
autor
- Key laboratory of C&PC structures, Ministry of Education, International Institute for Urban System Engineering, Southeast University, Nanjing, China
autor
- Jiangsu Key Laboratory for Construction Materials, Southeast University, Nanjing, China
Bibliografia
- 1. R. Wang, R. H. Chen, W.R high performance aerated concrete block self-thermal conservation technology, Wall Materials Innovation & Energy Saving in Buildings, 12, 33-35 (2008).
- 2. X. Q. Peng, G. H. QI, Research on Preparation of Non-Autoclaved Aerated Concrete with Phosphorus Slag, Journal of Chongqing Jianzhu University, 30, 4, 132-135 (2008).
- 3. N. Narayanan, Ramamurthy, K. [2000] “Structure and properties of aerated concrete: a review,” Cement and Concrete Composites 22, 321-329.
- 4. B. T. Ilker, S. Mustaf, Prediction of properties of AAC aggregate concrete using artificial neural network, Computational Materials Science, 41, 117-125 (2007).
- 5. X. P. Chen, Trial-production of Ceramisite-reinforced Aerated Concrete Block and Experiment of Masonry Performance, Zhejiang University Press, 2006.
- 6. Y. B. Yang, X. M. Wu, Research of modified polypropylene fiber applied in fly ash AAC, Concrete, 2006.
- 7. L. X. Ma, Technical study of brucite fiber AAC, Chang’an University Press, 2007.
- 8. A. Mohammed, N. U. Mousa, [2009] “Experimental and analytical study of carbon fiber-reinforced polymer (FRP)/autoclaved aerated concrete (AAC) sandwich panels,” Engineering Structures, 31, 2237-2344 (2009).
- 9. A. Laukaitis, J. Keriene, Influence of fibrous additives on properties of aerated autoclaved concrete forming mixtures and strength characteristics of products, Constr. Build. Mat., 23, 3034-3042 (2009).
- 10. J. Y. Qian, Research on application of polymer impregnated concrete in hydropower engineering repair, HUST Press, 2005.
- 11. T. C. Zhou, Development of aerated concrete of fly ash added with high polymers, Journal of Anhui Institute of Mechanical & Electrical Engineering, 16, 1, 712-74 (2001).
- 12. N. Y. Mostafa, Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete, Cem. Concr. Res., 35, 1349-1357 (2005).
- 13. N. Narayanan, K. Ramamurthy, Microstructural investigations on aerated concrete, Cem. Concr. Res., 30, 457-464 (2000).
- 14. K. Cenk, Utilization of natural zeolite in aerated concrete production, Cem. Concr. Comp., 32, 1-8 (2010).
- 15. T. Rougelot, N. Burlion, D. Bernar, About microcracking due to leaching in cementitious composites: X-ray microtomography description and numerical approach, Cem. Concr. Res., 40, 271–283 (2010).
- 16. S. Mori, M. Endo, S. Komatsu, A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT, Phys. Med. Biology., 51, 16, 3953–3965 (2006).
- 17. J. D. Han, G. H. Pan, W. Sun, Investigation on Carbonation Induced Meso-Defects Changes of Cement Mortar Using 3D X-Ray Computed Tomography, Journal of the Chinese Ceramic Society, 39, 1, 75-79 (2011).
- 18. K. Hulya, C. Thomas, Microstructural investigations of naturally and artificially weathered autoclaved aerated concrete, Cem. Concr. Res., 33, 1423-1432 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-593bfaf0-a662-45cf-9d8b-2b3e98c4e652