PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigations of effect of indoor air quality on thermal comfort in residential buildings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of the CO2 concentration in a local air zone in naturally ventilated residential houses on the residents’ behaviour was numerically investigated. A numerical two-dimensional CFD model of the indoor zone based on experiments performed by the authors was used. Different resident locations in the fluid domain and different inlet velocities imposed by wind were considered in simulations. The overall thermal comfort and IAQ indices were also calculated. The investigations results show that in contrast to the overall air quality, the local CO2 was strongly dependent upon the resident location, fresh air inlet velocity and ventilation system type.
Rocznik
Strony
91--121
Opis fizyczny
Bibliogr. 29 poz., il., tab.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
autor
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
Bibliografia
  • 1. F. MEYER, Niedrigenergiehäuser Heidenheim: Hauskonzepte und erste Meßergebnisse, Eggenstein-Leopoldshafen: Fachinformationszentrum, Karlsruhe, Bine Projekt Info-Service 1993; Nr. 9.
  • 2. T. MAIER, M. KRZACZEK, J. TEJCHMAN. Comparison of physical performances of the ventilation systems in low-energy residential houses. Energy and Building 2009, 41, 337-353.
  • 3. G. Y. YUN, K. STEEMERS, Behavioural, physical and socio-economic factors in household cooling energy consumption. Applied Energy 2011, 88, 2191-2000.
  • 4. A. ROETZEL, A. TSANGRASSOULIS, U. DIETRICH, S. BUSCHING, A review of occupant control on natural ventilation. Renewable and Sustainable Energy Reviews 2010, 14, 1001-1013.
  • 5. T. A. LU, KNUUTILA, M. VILJANEN, X. LU. A novel methodology for estimating space air change rates and occupant CO2 generation rates from measurements in mechanically-ventilated buildings. Building and Environment 2010, 45, 1161-1172.
  • 6. G. M. STAVRAKAKIS, D. P. KARADIMOU, P. L. ZERVAS, H. SARIMVEIS, N. C. MARKATOS. Selection of window sizes for optimizing occupational comfort and hygiene based on computational fluid dynamics and neural networks. Building and Environment 2011, 46, 298-314.
  • 7. ASHRAE. ASHRAE standard 62.1 – ventilation for acceptable indoor air quality. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers 2006.
  • 8. P. O. FANGER. Human requirement in future air-conditioned environments: a search for excellence. In: Proceedings of ISHVAC’99, Shenzhen, China, 1999, 86-92.
  • 9. G. M. STAVRAKAKIS, P. L. ZERVAS, H. SARIMVEIS, N. C. MARKATOS. Development of a computational tool to quantify architectural design effects on thermal comfort in naturally ventilated rural houses. Building and Environment 2010, 45, 1, 65-80.
  • 10. S, MURAKAMI, S. KATO, J. ZENG. Development of a computational thermal manikin-CFD analysis of thermal environment around human body. In: Proceedings of Tsinghua-HVAC’95, Beijing, China 1995, 2, 349–54.
  • 11. EN 13779. Ventilation for non-residential buildings – Performance requirements for ventilation and room-conditioning systems, 2007.
  • 12. B. E. LAUNDER, D. B. SPALDING. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 1974, 3,269-289.
  • 13. G. BRAGER, G. PALIAGA, R. DE DEAR. Operable Windows, personal control and occupant comfort. ASHRAE Transactions 2004, 110 (Part 2).
  • 14. ISO 16814. Building environment design – Indoor air quality – Methods of expressing the quality of indoor air for human occupancy, 2008.
  • 15. S. M. B. BECK, S. C. GRINSTED, S. G. BLAKEY. Worden, K. A novel design for panel radiators. Applied Thermal Engineering 2004, 24, 1291-1300.
  • 16. S. B. M. BECK, S. G. BLAKEY, M. C. CHUNG. The effect of wall emissivity on radiator heat output. Building Services Engineering Research and Technology 2001, 22, 185-194.
  • 17. S. MURAKAMI, S. KATO, J. ZENG. Combined simulation of airflow, radiation and moisture transport for heat release from a human body, Building and Environment 2000, 35, 489-500.
  • 18. J. LI, LI, Y. S. J. WAY, ZHAN, Y. A. HO, J. LI, E. LAM. Effect of green roof on ambient CO2 concentration. Building and Environment 2010, 45, 2644-2651.
  • 19. T. M. LAWRENCE, J. E. BRAUN. A methodology for estimating occupant CO2 source generation rates from measurements in small commercial buildings. Building and Environment 2007, 42, 623-639.
  • 20. S. HYUN, C. KLEINSTREUER. Numerical simulation of mixed convection heat and mass transfer in a human inhalation test chamber. International Journal of Heat and Mass Transfer 2001, 44, 2247–60.
  • 21. Y. YANES, C. J. YAPP. Indoor and outdoor urban atmospheric CO2: Stable carbon isotope constraints on mixing and mass balance, Applied Geochemistry 2010, 25, 1339-1349.
  • 22. ANSYS Inc. ANSYS Release 11.0. Documentation, 2007.
  • 23. S. MURAKAMI, S. KATO, J. ZENG. Flow and temperature fields around human body with various room air distribution, CFD study on computational thermal manikin – Part I, ASHARE Transactions 1997, 103, 3-15.
  • 24. M. KRZACZEK, J. TEJCHMAN. Indoor Air quality and thermal comfort in naturally ventilated low-energy residential houses. Air Quality Monitoring and Modeling (eds. Sunil Kumar and Rakesh Kumar), 79-116, 2012.
  • 25. ISO 7730. Ergonomics of the thermal environment. Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Annex D, 2005.
  • 26. H. AWBI. Ventilation of building, E & FN Spon, 2003.
  • 27. M. J. HODGSON, J. FROHLIGER, E. PERMAR, C. TIDWELL, N., D. TRAVEN, S., A. OLENCHOCK, M. KARPF. Symptoms and Microenvironmental Measures in Nonproblem Buildings, Journal of Occupational and Environmental Medicine, 1991, 33(4): 527-533
  • 28. J. A. DUFFIE, W. A. BECKMAN. Solar Engineering of Thermal Processes, New York: John Wiley and Sons 1991.
  • 29. HIGROSYSTEM. Technical data specification of ventilator V2A, www.higrosystem.com, 2012 (in polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59363827-745f-4b64-8bd0-0d0d438da554
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.