Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the microstructure and mechanical properties of an AA2024/SiC composite produced using powder metallurgy, followed by hot extrusion and multi-pass hot rolling. The composite, containing 5 wt% SiC, was fabricated by hot pressing at 450°C, then extruded and rolled with reductions of up to 66.2%. Microstructural analysis revealed uniform distribution of the SiC particles, grain refinement due to dynamic recrystallization (DRX), and enhanced particle dispersion with increasing rolling reduction. The hardness measurements showed significant improvement, with values increasing from 91 HV1 in the extruded state to 112 HV1 after the final rolling pass, and further grew to 151 HV1 after heat treatment. The tensile tests confirmed a strengthening effect, with the yield stress and ultimate tensile strength rising with rolling reduction from 205 MPa and 304 MPa (after initial rolling) to 236 MPa and 352 MPa (after the final rolling), respectively. Solution treatment and aging of the rolled composite resulted in a sharp increase in yield stress and ultimate tensile strength, reaching 293 MPa and 431 MPa after the first pass, increasing to 375 MPa and 484 MPa after the final pass. The study concludes that hot rolling significantly enhances the mechanical performance of AA2024/SiC composites, with grain refinement and particle fragmentation playing key roles in the strengthening mechanisms.
Czasopismo
Rocznik
Tom
Strony
102--112
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, 30 A.
autor
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, 30 A.
Bibliografia
- [1] Brillon A., Garcia J., Riallant F., Garnier C., Joulain A., Lu Y., Silvain J.F., Characterization of Al/B4C composite materials fabricated by powder metallurgy process technique for nuclear applications, Journal of Nuclear Materials 2022, 365, 153724, https://doi.org/10.1016/j.jnucmat.2022.153724.
- [2] Ipekoglu, M., Nekouyan, A., Albayrak, O., Altintas S., Mechanical characterization of B4C reinforced alumi num matrix composites produced by squeeze casting. Journal of Materials Research 2017, 32, 599–605, https://doi.org/10.1557/jmr.2016.495.
- [3] Garbiec D., Jurczyk M., Levintant-Zayonts N., Mościcki T., Properties of Al-Al2O3 composites synthesized by spark plasma sintering method, Archives of Civil and Mechanical Engineering 2015, 15, 4, 933-939, https://doi.org/10.1016/j.acme.2015.02.004.
- [4] Iyengar A.S., Suresh R., Spark Plasma Sintering of Al2O3 Reinforced Aluminum Alloy Metal Matrix Composites (Review), Powder Metallurgy and Metal Ceramics 2024, 62, 536-554, https://doi.org/10.1007/s11106-024-00416-6.
- [5] Włodarczyk-Fligier A., Dobrzański L.A., Kremzer M., Adamiak M., Manufacturing of Aluminium Based Composite Materials Reinforced by Al2O3 Particles, Journal of Achievements in Materials and Manufacturing Engineering 2008, 27, 1, 99–102.
- [6] Balog M., Krizik P., Svec P., Orovcik L., Industrially fabricated in-situ Al-AlN metal matrix composites (part A): Processing, thermal stability, and microstructure, Journal of Alloys and Compounds 2021, 883, 160858, https://doi.org/10.1016/j.jallcom.2021.160858.
- [7] Abdelatty R.H., Radwan A.B., Youssef K., Ijaz M.F., Abdul Shakoor R., Effect of AlN on the Mechanical and Electrochemical Properties of Aluminum Metal Matrix Composites, Materials 2024, 17, 13, 3258, https://doi.org/10.3390/ma17133258.
- [8] Ma X., Zhao Y., Tian W., Qian Z., Chen H.W., Wu Y.Y., Liu X.F., A novel Al matrix composite reinforced by nano-AlNp network, Scientific Reports 2016, 6, 34919, https://doi.org/10.1038/srep34919.
- [9] Gajewska M., Dutkiewicz J., Morgiel J., Microstructure and Mechanical Properties of AA7475/AlN Compacts with Varied Reinforcing Particles Size, Composites Theory and Practise 2012, 12, 3, 177-181.
- [10] Suresh S., Shenbag N., Moorthi V., Aluminium-Titanium Diboride (Al-TiB2) Metal Matrix Composites: Challenges and Opportunities, Procedia Engineering 2012, 38, 89-97, eng.2012.06.013.
- [11] Sridhar Raja, K.S., Hemanandh, J., Mohan Krishna, J., Muni Sai Preetham, R., Effect of TiB2 on Mechanical Properties and Microstructural of Aluminium Compo site. [In:] Arockiarajan, A., Duraiselvam, M., Raju, R. (eds) Advances in Industrial Automation and Smart Manufacturing. Lecture Notes in Mechanical Engineering 2020, 697–703. Springer, Singapore, https://doi.org/10.1007/978-981-15-4739-3_60.
- [12] Chebolu R., Nallu R., Chanamala R., Effect of TiB2 on Tribological Properties of As-Cast Zn-Al-Cu/SiC Composites Using Taguchi and Anova Techniques, Composites Theory and Practice 2022, 22, 2, 79–86.
- [13] Parsons E.M., Shaik S.Z., Additive manufacturing of aluminum metal matrix composites: Mechanical alloying of composite powders and single track consolidation with laser powder bed fusion, Additive Manufacturing 2022, 50, 102450, https://doi.org/10.1016/j.addma.2021.102450.
- [14] Pandey U., Purohit R., Agarwal P., Dhakad S.K., Rana R.S., Effect of TiC particles on the mechanical properties of aluminium alloy metal matrix composites (MMCs), Materials Today: Proceedings 2017, 4, 4, 5452–5460, https://doi.org/10.1016/j.matpr.2017.05.057.
- [15] Samer N., Andrieux J., Gardiola B., Karnatak N., Mar tin O., Kurita H., Chaffron L., Gourdet S., Lay S., Dezellus O., Microstructure and mechanical properties of an Al-TiC metal matrix composite obtained by reactive synthesis, Composites Part A: Applied Science and Manufacturing 2015, 72, 50-57, https://doi.org/10.1016/j.compositesa.2015.02.001.
- [16] Pandey U., Purohit R., Agarwal P., Singh S.K., Study of Fabrication, Testing and Characterization of Al/TiC Metal Matrix Composites through different Processing Techniques, Materials Today: Proceedings 2018, 5, 2, 4106-4117, https://doi.org/10.1016/j.matpr.2017.11.671.
- [17] Habba M.I.A., Barakat W.S., Elnekhaily S.A. Hamid F.S., Microstructure and tribological behavior of Al–TiC composite strips fabricated by a multi-step densification method. Scientific Reports 2024, 14, 20767, https://doi.org/10.1038/s41598-024-70560-x.
- [18] Rohatgi, P.K., Weiss, D., Gupta, N., Applications of fly ash in synthesizing low-cost MMCs for automotive and other applications. JOM 2006, 58, 71-76, https://doi.org/10.1007/s11837-006-0232-4.
- [19] Sobczak J., Darłak P., A. Wojciechowski, K. Pietrzak, D. Rudnik, Technological Aspects of Synthesis of Alfa, Composites 2005, 5, 3-10.
- [20] Nikiel P., AA2024/Fly Ash Lightweight Composites Fabricated by Powder Metallurgy, Composites Theory and Practise 2024, 24, 2, 108–115, https://doi.org/10.62753/ctp.2024.05.2.2.
- [21] Sahin M., Guler C., Misirli C., Cetinarslan C.S., Eisazadeh H., Properties of Al/SiC metal matrix composites, Materials Testing 2018, 60, 6, 647-652, https://doi.org/10.3139/120.111200.
- [22] Bhatti T.M, Wang Y., Baig M.M.A.B.B, Jamal S., Shehzadi F., Farooq A., Interfacial behavior of Al/SiC composites and response against quasi-static loading, dynamic loading, fatigue, and ballistic impact, Journal of Alloys and Compounds 2024, 1005, 176097, https://doi.org/10.1016/j.jallcom.2024.176097.
- [23] Karvanis K., Fasnakis D., Maropoulos A., Papanikolaou S., Production and mechanical properties of Al-SiC metal matrix composites, IOP Conference Series: Materials Science and Engineering 2016, 161, 12070, https://doi:10.1088/1757-899X/161/1/012070.
- [24] Bhushan R.K., Effect of SiC particle size and weight % on mechanical properties of AA7075 SiC composite. Advanced Composites and Hybrid Materials 2021, 4, 74–85, https://doi.org/10.1007/s42114-020-00175-z.
- [25] Zare R., Sharifi H., Saeri M.R., Tayebi M., Investigating the effect of SiC particles on the physical and ther mal properties of Al6061/SiCp composite, Journal of Alloys and Compounds, 2019, 801, 520–528, https://doi.org/10.1016/j.jallcom.2019.05.317.
- [26] Walczak M., Pieniak D., Zwierzchowski M., The tribological characteristics of SiC particle reinforced aluminium composites, Archives of Civil and Mechanical Engineering 2015, 15, 1, 116-123, https://doi.org/10.1016/j.acme.2014.05.003.
- [27] Dhanashekar M., Senthil Kumar V.S., Squeeze Casting of Aluminium Metal Matrix Composites-An Overview, Procedia Engineering 2014, 97, 412-420, https://doi.org/10.1016/j.proeng.2014.12.265.
- [28] Li J., Lü S., Chen L., Liao Q., Guo W., Wu S., Influence of squeeze casting pressure on nanoparticle distribution and mechanical properties of nano-SiCp/Al-Cu composites assisted with ultrasonic vibration, Transactions of Nonferrous Metals Society of China 2023, 33, 7, 1977–1987, https://doi.org/10.1016/S1003-6326(23)66237-5.
- [29] Sankhla A., Patel K.M., Metal Matrix Composites Fabricated by Stir Casting Process - A Review. Advances in Materials and Processing Technologies 2021, 8, 2, 1270-1291, https://doi.org/10.1080/2374068X.2020.1855404.
- [30] Singh R., Singh G., Investigations of Al-SiC AMC pre pared by vacuum moulding assisted stir casting, Journal of Manufacturing Processes 2015, 19, 142-147, https://doi.org/10.1016/j.jmapro.2015.06.011.
- [31] Surya, M.S, Effect of SiC Weight Percentage and Sintering Duration on Microstructural and Mechanical Be haviour of Al6061/SiC Composites Produced by Powder Metallurgy Technique, Silicon 2022, 14, 2731–2739, https://doi.org/10.1007/s12633-021-01053-z.
- [32] Ji X., Li S., Liu H., Li X., Zhang X., Liu L., Li S., Gao L., Wang S., Chen B., Li Y., Process Optimization of SiC-Reinforced Aluminum Matrix Composites Pre pared Using Laser Powder Bed Fusion and the Effect of Particle Morphology on Performance. Materials 2024, 17, 1187, https://doi.org/10.3390/ma17051187.
- [33] Wang N., Wang Z., Weatherly G.C., Formation of magnesium aluminate (spinel) in cast SiC particulate-rein forced Al(A356) metal matrix composites, Metallurgical Transactions A 2992, 23, 1423–1430, https://doi.org/10.1007/BF02647325.
- [34] Kulkarni M.D., Robi P.S., Prasad R.C., Ramakrishnan P., Fracture toughness and fractography of cast and ex truded 7075 Al SiC particulate composites, Scripta Metallurgica et Materialia 1994, 31, 3, 237–242, https://doi.org/10.1016/0956-716X(94)90276-3.
- [35] Chawla N., Williams J.J., Saha R., Mechanical behavior and microstructure characterization of sinter-forged SiC particle reinforced aluminum matrix composites, Journal of Light Metals 2002, 2, 4, 215–227, https://doi.org/10.1016/S1471-5317(03)00005-1.
- [36] Hashiguchi D., Tricker D., Tarrant A., Campbell J., Pokross C., Discontinuously reinforced aluminum MMC extrusions, Metal Powder Report 2017, 72, 4, 252-258, https://doi.org/10.1016/j.mprp.2016.01.074.
- [37] Szczepanik S., Nikiel P., Yield Stress of PM Al-10 wt.% SiC composite after extrusion and drawing, Composites Theory and Practice 2013, 13, 3, 160-164.
- [38] Szczepanik S., Nikiel P., Bednarczyk P., Influence of Cold Working on Mechanical Properties of Al-SiC Composites. Materials Science Forum 2017, 892, 53-58, https://doi.org/10.4028/www.scientific.net/msf.892.53.
- [39] Luo Y., Yi J., Chen M., Zhou L., Zhang Z., Huang Z., Sun X., Zhang Y., Wen L., Wu Z., Effect of hot rolling on microstructures and mechanical properties of SiCp/A356 aluminum matrix composites, Journal of Materials Research and Technology 2024, 33, 1776-1784, https://doi.org/10.1016/j.jmrt.2024.09.201.
- [40] Amirkhanlou S., Rezaei M.R., Niroumand B., Toroghinejad M.R., High-strength and highly-uniform composites produced by compocasting and cold rolling processes, Materials & Design 2011, 32, 4, 2085–2090 https://doi.org/10.1016/j.matdes.2010.11.046.
- [41] Wang Z., Liang Z., Huang Q., Li Z., Niu X., Effects of Hot-Rolling Processes on the Fracture Behaviors and Mechanical Properties of 2009Al/SiCp Metal Matrix Composites. Materials and Technology 2024, 58, 4, 497-502, https://doi.org/10.17222/mit.2024.1101.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5931f3dd-72d0-4f06-8087-4f4cdbebf56a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.