PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Artificial Neural Network: A Case of Single Point Incremental Forming (SPIF) of Cu67Zn33 Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Artificial neural network (ANN), a Computational tool that is frequently applied in the modeling and simulation of manufacturing processes. The emerging forming technique of sheet metal which is typically called single point incremental forming (SPIF) comes into the map and the research interest towards its technological parameters. The surface quality of the end product is a major issue in SPIF, which is more critical with the hard metals. The part of the brass metal is demanded in many industrial uses because of its high load-carrying capacity and its wear resistance property. Considering the industrial interest and demand of the brass metal products, the present study is done with the SPIF experiment on calamine brass Cu67Zn33 followed by an ANN analysis for predicting the absolute surface roughness. The modeling result shows a close agreement with the measured data. The minimum and maximum errors are found in experiment 3 and experiment 7 respectively. The error of predicted roughness is found in the range of –30.87 to 20.23 and the overall coefficient of performance of ANN modeling is 0.947 which is quite acceptable.
Twórcy
autor
  • Birla Institute of Technology, Faculty of Production Engineering, India
autor
  • Birla Institute of Technology, Faculty of Production Engineering, India
Bibliografia
  • Alsamhan, A., Ragab, A.E., Dabwan, A., Nasr, M.M., and Hidri, L. (2019). Prediction of formation force during single-point incremental sheet metal forming using artificial intelligence techniques, PLoS One 14(8).
  • Ambrogio, G., Cozza, V., Filice, L. and Micari, F. (2007). An analytical model for improving precision in single point incremental forming, Journal of Materials Processing Technology, vol. 191, pp. 92–98.
  • Ambrogio, G., Filice, L., Guerriero, F., Guido, R. and Umbrello D. (2011). Prediction of incremental sheet forming process performance by using a neural network approach, Int. J. Adv. Manuf. Technol., vol. 54, no. 9, pp. 921–930.
  • Bahoul, R., Arfa, H. and Belhadj, H.S. (2014). A study on optimal design of process parameters in single point incremental forming of sheet metal by combining Box–Behnken design of experiments, response surface methods and genetic algorithms, Int. J. Adv. Manuf. Technology, vol. 74, no. 1–4, pp. 163–185.
  • Dabwan, A., Ragab, A.E., Saleh, M.A.E. and Daoud, A.K. (2016). Determining the effect of key process parameters on forming force of single point incremental sheet metal forming, Proceedings of the International Conference on Industrial Engineering and Operations Management, Kuala Lumpur, Malaysia.
  • Dabwan, A., Ragab, A.E., Saleh, M.A., Anwar, S., Ghaleb, A.M. and Rehman, A.U. (2020). Study of the Effect of Process Parameters on Surface Profile Accuracy in Single-Point Incremental Sheet Forming of AA1050-H14 Aluminum Alloy, Advances in Materials Science and Engineering, 1–14.
  • Durante, M., Formisano, A. and Langella, A. (2010). Comparison between analytical and experimental roughness values of components created by incremental forming, Journal of Materials Processing Technology, vol. 210, pp. 1934–1941.
  • Esmaeilpour, R., Pourboghrat, F., Kim, H. and Park, T. (2019). Finite Element Analysis of Single Point Incremental Forming (SPIF) of Aluminum 7075 Using Different Types of Toolpath, IOP Conf. Series: Materials Science and Engineering, No. 521.
  • Gupta, P. and Jeswiet, J. (2019). Manufacture of an aerospace component by single point incremental forming, Procedia Materials Science, No. 112–119.
  • Hagan, E. and Jeswiet, J. (2004). Analys is of surface roughness for parts formed by computer numerical controlled incremental forming, Journal of Engineering Manufacture, vol. 218, pp. 1307–1312.
  • Hamilton K.A.S. (2010). Friction and external surface roughness in single point incremental forming: A study of surface friction, contact area and the ‘orange peel’ effect.
  • Hamilton, K. and Jeswiet, J. (2010). Single point incremental forming at high feed rates and rotational speeds: Surface and structural consequence, CIRP Annals – Manufacturing Technology, vol. 59, pp. 311–314.
  • Junk, S., Hirt, G. and Chouvalova, I. (2003). Forming strategies and tools in incremental sheet forming, in 10th International Conference on Sheet Metal, UK, pp. 57–64.
  • Kecman, V. (2001). Learning and soft computing, MIT Press, Cambridge, MA, USA.
  • Khatal, G.D., Borkar, B.R. and Ghadmode M.M. (2016). Analytical Study of SPIF Process, International Journal of Advanced Research and Innovative Ideas in Education, vol. 2, no. 4, pp. 359–363.
  • Liew, K.M., Tan, H., Ray, T. and Tan, M. (2004). Optimal process design of sheet metal forming for minimum spring back via an integrated neural network evolutionary algorithm, International Journal of Advanced Manufacturing Technology, vol. 26, no. 3–4, pp. 284–294.
  • Luo, Y., He, K. and Du, R. (2010). A new sheet metal forming system based on incremental punching, part 2: machine building and experiment results, Int. J. Adv. Manuf. Technol., vol. 51, no. 5–8, pp. 348–353.
  • Murugesan, M. and Jung, D.W. (2021). Formability and Failure Evaluation of AA3003-H18 Sheets in Single-Point Incremental Forming Process through the Design of Experiments, Materials (Basel), vol. 14, pp. 1–26.
  • Oleksik, V., Pascu, A., Deac, R., Fleaca, R., Bologa, O. and Racz, G. (2010). Experimental study on the surface quality of the medical implants obtained by Single Point Incremental Forming, Int. J. Mater. Form., vol. 3, pp. 935–938.
  • Oraon, M. and Sharma, V. (2010). Sheet Metal Micro Forming: Future Research Potentials, Int. J. on Production and Industrial Engineering, vol. 1, pp. 31–35.
  • Oraon, M. and Sharma, V. (2018a). Predicting Force in Single Point Incremental Forming by Using Artificial Neural Network, International Journal of Engineering (IJE), IJE TRANSACTIONS A: Basics, vol. 31, no. 1, pp. 88–95.
  • Oraon, M. and Sharma, V. (2018b). Prediction of surface roughness in single point incremental forming of AA3003-O alloy using artificial neural network, Int. J. Materials Engineering Innovation, vol. 9, no. 1, pp. 1–19.
  • Park, J.J. and Kim, Y.H. (2003). Fundamental studies on the incremental sheet metal forming technique, Journal of Materials Processing Technology, vol. 140, pp. 447–453.
  • Patel, J.R., Samvatsar, K.S., Prajapati, H.P. and Rangrej, S.S. (2015). Optimization of Process Parameters for Reducing Surface Roughness Produced During Single Point Incremental Forming Process, International Journal on Recent Technologies in Mechanical and Electrical Engineering, vol. 2, no. 9, pp. 19–23.
  • Pohlak, M., Majak, J. and Kuttner, R. (2007). Manufacturability and limitations in incremental sheet forming, in Proc. Estonian Acad. Sci. Eng, vol. 13, pp. 129–139.
  • Radu, M.C. and Cristea, I. (2013). Processing Metal Sheets by SPIF and Analysis of Parts Quality. Materials and Manufacturing Processes, Materials and Manufacturing Processes, vol. 28, pp. 287–293.
  • Shah, H. and Chaudhary, S. (2016). Optimization of Process Parameters for Incremental Sheet Metal Forming Process, International Journal For Technological Research In Engineering, vol. 3, no. 7, pp. 1432–1435.
  • Uttarwar, P.B., Raini, S.K. and Malwad, D.S. (2015). Optimization of process parameter on Surface Roughness (Ra) and Wall Thickness on SPIF using Taguchi method, in International Research Journal of Engineering and Technology, vol. 2, no. 9, pp. 781–784.
  • Vahdati, M., Sedighi, M. and Mahdavinejad R. (2014). Prediction of applied forces in incremental sheet metal forming (ISMF) process by means of artificial neural network (ANN), in Journal of Automotive and Applied Mechanics, vol. 2, no. 2.
  • Varthini, R., Gandhinathan, R., Pandivelan, C. and Jeevanantham A.K. (2014). Modelling and optimization of process parameters of The single point incremental forming of aluminum 5052 alloy sheet using genetic algorithm-back Propagation neural network, in International Journal of Mechanical And Production Engineering, vol. 2, no. 5, pp. 55–62.
  • Wang, L. and Lee, T.C. (2006). Prediction of limiting dome height using neural network and finite element method, in J. Shanghai University (Eng. Ed), vol. 27, pp. 1082–1088.
  • Xu, J., Zhang, Z. and Wu, Y. (2004). Application of data mining method to improve the accuracy of spring back prediction in sheet metal forming, in International Journal of Advanced Manufacturing Technology, vol. 8, no. 3, pp. 348–353.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5930ec27-1d8c-45ba-ba6c-f4af9a51e3ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.