PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental analysis of ACP on photovoltaics as free convection for increasing output power

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Eksperymentalna analiza ACP w fotowoltaice jako konwekcja swobodna w celu zwiększenia mocy wyjściowej
Języki publikacji
EN
Abstrakty
EN
This experiment uses perforated ACP as a cooling medium mounted on the back of a 100 Wp polycrystalline type photovoltaic panel, ACP with a hole diameter of 10 mm as passive cooling, which functions to reduce the temperature of the photovoltaic panel which has increased due to an increase in temperature. Radiation and excess heat from the Sun from 09.00 am to 15.00 pm, which is the peak of solar heat in subtropical areas such as Indonesia. The decrease in the temperature of the PV panels installed using the ACP cooler with a maximum of 9.13C due to the free convection process will cause an increase in the maximum output power of the PV panel of 11.15 W.
PL
W tym eksperymencie zastosowano perforowany ACP jako czynnik chłodzący zamontowany z tyłu panelu fotowoltaicznego typu polikrystalicznego o mocy 100 Wp, ACP o średnicy otworu 10 mm jako chłodzenie pasywne, którego zadaniem jest obniżenie temperatury panelu fotowoltaicznego, która wzrosła ze względu na wzrost temperatury. Promieniowanie i nadmiar ciepła ze Słońca od 09:00 do 15:00, co jest szczytem ciepła słonecznego w obszarach podzwrotnikowych, takich jak Indonezja. Spadek temperatury paneli fotowoltaicznych zainstalowanych przy użyciu chłodnicy ACP o maksymalnie 9,13C w wyniku procesu konwekcji swobodnej spowoduje wzrost maksymalnej mocy wyjściowej panelu fotowoltaicznego o 11,15 W.
Rocznik
Strony
121--125
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Sriwijaya University, Jl raya Indralaya km 32 Ogan Ilir, Indonesia
  • Sriwijaya University, Jl raya Indralaya km 32 Ogan Ilir, Indonesia
  • Sriwijaya University, Jl raya Indralaya km 32 Ogan Ilir, Indonesia
Bibliografia
  • [1] D. Pilakkat and S. Kanthalakshmi, “Drift Free Variable Step Size Perturb and Observe MPPT Algorithm for Photovoltaic Systems Under Rapidly Increasing Insolation,” vol. 22, no. 1, pp. 19–26, 2018, doi: 10.7251/ELS1822019P.
  • [2] J. Ajayan, D. Nirmal, P. Mohankumar, M. Saravanan, and M. Jagadesh, “A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies,” Superlattices Microstruct., vol. 143, no. May, p. 106549, 2020, doi: 10.1016/j.spmi.2020.106549.
  • [3] H. Soonmin, A. Lomi, E. C. Okoroigwe, and L. R. Urrego, “Investigation of Solar Energy : The Case Study in Malaysia, Indonesia, Colombia and Nigeria,” vol. 9, no. 1, 2019.
  • [4] A. R. Amelia, Y. M. Irwan, W. Z. Leow, M. Irwanto, I. Safwati, and M. Zhafarina, “Investigation of the effect temperature on photovoltaic (PV) panel output performance,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 6, no. 5, pp. 682–688, 2016, doi: 10.18517/ijaseit.6.5.938.
  • [5] L. Idoko, O. Anaya-lara, and A. Mcdonald, “Enhancing PV modules efficiency and power output using multi-concept cooling technique,” Energy Reports, vol. 4, pp. 357–369, 2018, doi: 10.1016/j.egyr.2018.05.004.
  • [6] S. Ni, E. Giama, and A. M. Papadopoulos, “Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels , Part II : Active cooling techniques,” vol. 155, no. November 2017, pp. 301–323, 2018, doi: 10.1016/j.enconman.2017.10.071.
  • [7] M. R. Gomaa, W. Hammad, M. Al-dhaifallah, and H. Rezk, “Performance enhancement of grid-tied PV system through proposed design cooling techniques : An experimental study and comparative analysis,” Sol. Energy, vol. 211, no. April, pp. 1110–1127, 2020, doi: 10.1016/j.solener.2020.10.062.
  • [8] T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Fundamentals Of Heat And Mass Transfer Seventh Edition. United States of America: John Wiley & Sons, 2011.
  • [9] S. Kalaiselvan, V. Karthikeyan, G. Rajesh, A. S. Kumaran, and B. Ramkiran, “Solar PV Active and Passive cooling technologies – a Review,” 2018 Internat2018 Int. Conf. Comput. Power, Energy, Inf. Commun. (ICCPEIC)ional Conf. Comput. power, energy, Inf. Commun., pp. 166–169, 2018, doi: 10.1109/ICCPEIC.2018.8525185.
  • [10] H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy, vol. 90, no. 1, pp. 309–315, 2012, doi: 10.1016/j.apenergy.2011.01.017.
  • [11] M. I. Yusoff, M. Irwanto, L. W. Zhe, and G. Nair, “Cooling on Photovoltaic Panel Using Forced Air Convection Induced by DC Fan,” no. June, 2016, doi: 10.11591/ijece.v6i2.9118.
  • [12] M. Abdolzadeh and M. Ameri, “Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells,” Renew. Energy, vol. 34, no. 1, pp. 91–96, 2009, doi: 10.1016/j.renene.2008.03.024.
  • [13] A. Hadipour, M. Rajabi, and S. Rashidi, “An efficient pulsedspray water cooling system for photovoltaic panels: Experimental study and cost analysis,” Renew. Energy, vol. 164, pp. 867–875, 2021, doi: 10.1016/j.renene.2020.09.021.
  • [14] E. Cuce, T. Bali, and S. A. Sekucoglu, “Effects of passivecooling on performance of silicon photovoltaic cells,” pp. 1–10, 2011, doi: 10.1093/ijlct/ctr018.
  • [15] V. Gupta, “CFD Analysis of Perforated Heat Sink Fins,” no.April 2017, 2019.
  • [16] I. A. Hasan, “Enhancement the Performance of PV Panel by Using Fins as Heat Sink,” vol. 36, no. 7, 2018.
  • [17] M. . D. Sandip S. kale, V. W. Bhatkar, “Performance Evaluation of Plate-Fin-And Tube Heat Exchanger with Wavy Fins- A Review,” J. Eng. Res. Appl., vol. 4, no. 9, pp. 154–158, 2014.
  • [18] A. Sofijan, B. Yudho, and Z. Nawawi, “Performance Evaluation of Perforated Aluminum Plate on Polycrystalline 100 Wp PV Module with Computer Recorder,” Turkish J. Comput. Math. Educ., vol. 12, no. 13, pp. 4358–4362, 2021.
  • [19] L. Andrei, A. Andreini, C. Bianchini, and G. Caciolli, “Effusion Cooling Plates for Combustor Liners : Experimental and Numerical Investigations on the Effect of Density Ratio E ff usion cooling plates for combustor liners : experimental and numerical investigations on the e ff ect of density ratio,” Energy Procedia, vol. 45, no. September 2015, pp. 1402–1411, 2014, doi: 10.1016/j.egypro.2014.01.147.
  • [20] T. J. Silverman et al., “Reducing Operating Temperature in Photovoltaic Modules,” pp. 1–9, 2018.
  • [21] A. Husain, R. Varshna, and V. Gupta, “A Review on Advancesin Design and Development of Heat Exchangers,” vol. III, no. Xi, pp. 60–66, 2016.
  • [22] F. Bayrak, H. F. Oztop, and F. Selimefendigil, “Effects ofdifferent fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection,” Sol. Energy, vol. 188, no. June, pp. 484–494, 2019, doi: 10.1016/j.solener.2019.06.036.
  • [23] K. H. Do, T. H. Kim, Y. Han, B. Choi, and M. Kim, “Generalcorrelation of a natural convective heat sink with plate-fins for high concentrating photovoltaic module cooling,” Sol. Energy, vol. 86, no. 9, pp. 2725–2734, 2012, doi: 10.1016/j.solener.2012.06.010.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-592efe99-d8ea-40cf-bf3e-c6fb3c66e44d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.