PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural and Tribological Characterization of Aluminium Bronzes with Additions of Si and Cr

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the investigation results of the crystallization (performed by means of the TDA method) and the microstructure of complex aluminium bronzes with the content of 6% Al, 4% Fe and 4% Ni, as well as Si additions in the scope of 1–2% and Cr additions in the scope of 0.1–0.3%, which have not been simultaneously applied before. For the examined bronze, the following tests were performed: hardness HB, impact strength (KU2). For bronze CuAl6Fe4Ni4Si2Cr0.3, characterizing in the highest hardness, wear tests were conducted with dry friction and the dry friction coefficient. The investigations carried out by means of the X-ray phase analysis demonstrated the following phases in the microstructure of this bronze: αCu, γ2 and complex intermetallic phases based on iron silicide type Fe3Si (M3Si M={Fe,Cr,…}). Compared to the normalized aluminium bronzes (μ=0.18–0.23), the examined bronze characterizes in relatively low wear and lower friction coefficient during dry friction (μ=0.147±0.016).
Rocznik
Strony
93--98
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • Lodz University of Technology, Department of Materials Engineering and Production Systems, Łódź, Poland
autor
  • Lodz University of Technology, Department of Materials Engineering and Production Systems, Łódź, Poland
autor
  • Kocaeli University, Department of Metallurgical and Materials Engineering, Kocaeli, Turkey
autor
  • Kocaeli University, Department of Metallurgical and Materials Engineering, Kocaeli, Turkey
autor
  • Kocaeli University, Department of Metallurgical and Materials Engineering, Kocaeli, Turkey
Bibliografia
  • [1] Shi, Z., Sun, Y., Bloyce, A. & Bell, T. (1996). Unlubricated rolling-sliding wear mechanisms of complex aluminium bronze against steel. Wear. 193, 235-241.
  • [2] Lv, Y., Wang, L., Xu, X., Han, Y. & Lu, W. (2015). Investigation of the Microstructure and Corrosion Properties of Friction Stir Processed Cast NiAl Bronze. Materials Transactions. 56(9), 1523-1529.
  • [3] Thapliyal, S. & Dwivedi, D.K. (2016). Study of the effect of friction stir processing of the sliding wear behavior of cast NiAl bronze: A statistical analysis. Tribology International. 97, 124-135.
  • [4] Alam, S., Marshall, R.I. & Sasaki, S. (1996). Metallurgical and tribological investigations of aluminium bronze bushes made by a novel centrifugal casting technique. Tribology International. 29(6), 487-492.
  • [5] Li, Y., Ngai, T.L. & Xia, W. (1996). Mechanical. friction and wear behaviours of a novel high-strength wear-resisting aluminum bronze. Wear. 197, 130-136.
  • [6] Prasad, B.K. (2004). Sliding wear behaviour of bronzes under varying material composition. microstructure and test conditions. Wear. 257, 110-123.
  • [7] Shi, Z., Sun, Y., Bloyce, A. & Bell, T. (1996). Influence of surface melting on dry rolling-sliding wear of aluminium bronze against steel. Wear. 198, 300-306.
  • [8] Yaşara, M. & Altunpak, Y. (2009). The effect of aging heat treatment on the sliding wear behaviour of Cu–Al–Fe alloys. Materials and Design. 30, 878-884.
  • [9] Jin, K., Qiao, Z., Zhu, S., Cheng, J., Yin, B. & Yanga, J. (2016). Synthesis effects of Cr and Ag on the tribological properties of Cu-9Al-5Ni-4Fe-Mn bronze under seawater condition. Tribology International. 101, 69-80.
  • [10] Pisarek, B.P. (2008). Abrasive wear of BA1055 bronze with additives of Si. Cr Mo and/or W. Archives of Foundry Engineering. 8(3), 209-216.
  • [11] Pisarek, B. (2013). Aluminium bronzes with additions of Cr Mo and/or W with high resistance to wear. Zeszyty Naukowe Nr 1141. Rozprawy Naukowe Z. 441. Łódź: Wydawnictwo Politechniki Łódzkiej. (in Polish).
  • [12] Górny, Z., Lech, Z., Rutkowski, K., Strojny, Z., Welkens, T. (1963). Foundry alloys of non-ferrous metals. Melting and casting technology. Warszawa: WNT. (in Polish).
  • [13] Adamski, Cz., Bonderek, Z., Piwowarczyk, T. (1972). Microstructure of cast alloys of copper and zinc. Katowice: Śląsk. (in Polish).
  • [14] Górny, Z., Sobczak, J. (2005). Modern molding materials based on non-ferrous metals. Kraków: ZA-PIS. (in Polish).
  • [15] Raghavan, V. (2007). Al-Cu-Si (Aluminum-Copper-Silicon). Journal of Phase Equilibria and Diffusion. 28(2), 180-182. https://doi.org/10.1007/s11669-007-9024-y.
  • [16] Wang, C., Zhu, J., Lu, Y., Guo, Y. & Liu, X. (2014). Thermodynamic description of the Cu-Ni-Si system. Journal of Phase Equilibria and Diffusion. 35(1), 93-104. https://doi.org/10.1007/s11669-013-0277-3.
  • [17] Raghavan, V. (2010). Cu-Fe-Si (Copper-Iron-Silicon). Journal of Phase Equilibria and Diffusion. 31(2), 169-171. https://doi.org/10.1007/s11669-010-9647-2.
  • [18] Brezina, P. (1973). Gefögeumwandlungen und mechanische Eigenschaften der Mehrstoff-Aluminiumbronzen vom Typ CuAl 10 Fe5 Ni5. Giesserei-Forschung. 25(3), 1-10.
  • [19] Massalski, T.B., Okamoto, H., Subramanian, P.R. & Kacprzak, L. (1990). Binary Alloy Phase Diagrams, 2nd ed., (eds. T.B. Massalski, J. L. Murray, L. H. Bennet, H. Baker), ASM International.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5929c89f-b4bd-4a16-9b66-f0585188b078
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.