Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article introduces a new method of a decision tree construction. Such construction is performed using additional cuts applied for a verification of the cuts' quality in tree nodes during the classification of objects. The presented approach allows us to exploit the additional knowledge represented in the attributes which could be eliminated using greedy methods. The paper includes the results of experiments performed on data sets from a biomedical database and machine learning repositories. In order to evaluate the presented method, we compared its performance with the classification results of a local discretization decision tree, well known from literature. Our new method out performs the existing method, which is also confirmed by statistical tests.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--18
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
- Interdisciplinary Centre for Computational Modelling, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland
autor
- Interdisciplinary Centre for Computational Modelling, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland
autor
- Interdisciplinary Centre for Computational Modelling, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland
autor
- II Department of Internal Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
autor
- Interdisciplinary Centre for Computational Modelling, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland
autor
- Institute of Mathematics, University of Warsaw , Banacha 2, 02–097 Warsaw, Poland
- Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01–447 Warsaw, Poland
Bibliografia
- [1] Alizadeh, A., Eisen, M., Davis, R., Ma, C. et. al.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)
- [2] Alon, U. et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. PNAS 96, 6745–6750 (1999)
- [3] Bazan, J.G.: Hierarchical classifiers for complex spatio-temporal concepts. Transactions on Rough Sets, IX, LNCS 5390, 2008, pp. 474–750.
- [4] Bazan, J., G., Bazan-Socha, S., Buregwa-Czuma, Dydo, L., Rzasa, W., Skowron, A.: A classifier based on a decision tree with verifying cuts. In Proceedings of the Workshop on Concurrency, Specification and Programming (CS&P 2014), Chemnitz, Germany, 2014, September 29-October 1, volume 245 of Informatik-Bericht, pages 13-21, Humboldt University, 2014.
- [5] Bazan, J.G., Bazan-Socha, S., Buregwa-Czuma, S., Pardel, P.W., Sokolowska, B.: Predicting the presence of serious coronary artery disease based on 24 hour Holter ECG monitoring. In: M. Ganzha, L. Maciaszek, M. Paprzycki (eds.), Proceedings of the Federated Conference on Computer Science and Information Systems, 2012, pp. 279-286, IEEE Xplore - digital library.
- [6] Bazan, J.G., Bazan-Socha, S., Buregwa-Czuma, S., Pardel, P.W., Sokolowska, B.: Prediction of coronary arteriosclerosis in stable coronary heart disease, Proceedings of the Fourteen Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems, 2012, Springer-Verlag, Communications in Computer and Information Science, vol. 298, part 9, Springer, 2012, pp. 550-559.
- [7] Bazan, J., G., Buregwa-Czuma, S.: A Domain Knowledge as A Tool For Improving Classifiers, Fundamenta Informaticae, Volume 127, Number 1-4, pp. 495-511, 2013.
- [8] Bazan, J. G., Nguyen, H. S., Nguyen, S. H., Synak, P.,Wróblewski, J.: Rough set algorithms in classification problems. In: L. Polkowski, T. Y. Lin, S. Tsumoto (eds.), “Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems,” Studies in Fuzziness and Soft Computing, Springer-Verlag/Physica-Verlag, vol. 56, 2000, pp. 49–88.
- [9] Bazan, J. G., Szczuka,M.: The Rough Set Exploration System. Transactions on Rough Sets, III, LNCS 3400, 2005, pp. 37–56.
- [10] Breiman, L.: Random Forests. Machine Learning, 45, 5–32 (2001)
- [11] The Elements of Statistical Learning repository, http://statweb.stanford.edu/ tibs/ElemStatLearn/datasets/
- [12] Golub, T., Slonim, D., Tamayo, P. et al.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)
- [13] Gordon, G., Jensen, R., Hsiao, L., Gullans, S. et al.: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Research 62, 4963–4967 (2002)
- [14] Kent Ridge Biomedical Dataset repository, http://datam.i2r.a-star.edu.sg/datasets/krbd/
- [15] Nguyen, H. S.: Approximate Boolean Reasoning: Foundations and Applications in Data Mining, Transactions on Rough Sets, V, LNCS 4100, 2006, pp. 334–506.
- [16] Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences, 177, 2007, pp. 3–27.
- [17] Petricoin, E., Ardekani, A., Hitt, B., Levine, P. et al.: Use of proteomic patterns in serum to identify ovarian cancer. The Lancet 359, 572–577 (2002)
- [18] Singh, D. et al.: Gene expression correlates of clin. prost. cancer behavior. Cancer Cell 1, 203–209 (2002)
- [19] StatSoft, Inc. STATISTICA (data analysis software system), version 10
- [20] UC Irvine Machine Learning Repository, http://archive.ics.uci.edu/ml/
- [21] Wojnarski, M., Janusz, A., Nguyen, Hung Son, et al.: RSCTC’2010 Discovery Challenge: Mining DNA Microarray Data for Medical Diagnosis and Treatment. In Proceedings of RSCTC’2010, LNAI, 6086, Springer, Heidelberg, 2010, 4–9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5929b8e1-92e9-4ff2-806d-42463c0831fb