PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of the Semtex Matrix on the Thermal Behavior and Decomposition Kinetics of Cyclic Nitramines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal behavior and decomposition kinetics of Semtex 10 polymeric matrix (Semtex) bonded PBXs containing RDX (1,3,5-trinitro 1,3,5-triazinane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane), BCHMX (cis-1,3,4,6tetranitrooctahydroimidazo [4,5-d] imidazole), HNIW (2,4,6,8,10,12-hexanitro2,4,6,8,10,12-hexaazaisowurtzitane) have been investigated by means of nonisothermal TG and DSC techniques. It is shown that only a single decomposition process occurs for RDX-SE and HMX-SE whilst an obvious two-step process occurs for CL-20-SE and BCHMX-SE. The onset of the exotherms were observed at 210.6, 239.7, 279.2 and 229.4 °C with the peak maxima at 232.2, 249.4, 280.4 and 240.2 °C, and energy changes of 1808, 2140, 612 and 1757 J·g-1 for RDX-SE, BCHMX-SE, HMX-SE and CL-20-SE, respectively. It has been found that the Semtex matrix has little influence on the activation energy distribution for RDX, BCHMX and ε-CL-20. The activation energies for BCHMX-SE and CL-20-SE decomposition are almost independent of the degree of conversion, with mean values of 159.6 ±1.9 and 187.3 ±1.8 kJ·mol-1. It has been proved that Semtex and Viton A are better binders than C4 and Formex for ε-CL-20 and RDX based PBXs in terms of their greater thermal stability, and Formex is a poor binder for BCHMX.
Rocznik
Strony
509--528
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
autor
  • Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
autor
  • Military Technical College, Cairo, Egypt
autor
  • Research Institute of Industrial Chemistry, Explosia Co., 53217 Pardubice, Czech Republic
Bibliografia
  • [1] Chapman R.D., Wilson W.S., Fronabarger J.W., Merwin L.H., Ostrom G.S., Prospects of Fused Polycyclic Nitroazines as Thermally Insensitive Energetic Materials, Thermochim. Acta, 2002, 384(1-2), 229-243.
  • [2] Elbeih A., Pachman J., Zeman S., Akštein Z., Replacement of PETN by Bicyclo- HMX in Semtex 10, 8th International Armament Conference on Scientific Aspects of Armament and Safety Technology, Pułtusk, Poland, 2010, 2(2), 7-16.
  • [3] Elbeih A., Pachman J., Zeman S., Trzciński W.A., Akštein Z., Advanced Plastic Explosive Based on BCHMX Compared with Composition C4 and Semtex 10, New Trends Res. Energ. Mater., Proc. Semin., 14th, Czech Republic, 2011, 119-126.
  • [4] Klasovitý D., Zeman S., Method of Preparing cis-1,3,4,6-Tetranitrooctahydroimidazo- [4,5-d]imidazole (bicyclo-HMX, BCHMX), Czech Pat. 302068, Int. Cl.: C07D 487/04, University of Pardubice, July 28th, 2009.
  • [5] Gilardi R.F., Anderson J.L., Evans R., cis-2,4,6,8-Tetranitro-1H,5H-2,4,6,8- tetraazabi cyclo[3.3.0]octane, the Energetic Compound (bicyclo-HMX), Acta Cryst., E 58, 2002, o972-974.
  • [6] Klasovitý D., Zeman S., Ruzicka A., Jungova M., Rohac M., Cis-1,3,4,6- tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX), Its Properties and Initiation Reactivity, J. Hazard. Mater., 2009, 164(2-3), 954-961.
  • [7] Elbeih A., Pachman J., Trzciński W.A., Zeman S., Akštein Z., Šelešovsky J., Study of Plastic Explosives Based on Attractive Cyclic Nitramines, Part I. Detonation Characteristics of Explosives with PIB Binder, Propellants Explos. Pyrotech., 2011, 36(5), 433-438.
  • [8] Yan Q.-L., Zeman S., Elbeih A., Svoboda R., Thermodynamic Properties, Decomposition Kinetics and Reaction Models of BCHMX and Its Formex Bonded Explosive, Thermochim. Acta, 2012, 547, 150-160.
  • [9] Alcaraz A., Dougan A., Method to Prepare Semtex, UCRL-TR-226414, November 29, 2006, pp.1-3.
  • [10] Hiltmar S., Detection of Explosives and Landmines: Methods and Field Experience, ISBN 1-4020-0692-6, 2002, pp. 93-101.
  • [11] Brown G.I., The Big Bang: a History of Explosives, Sutton Publishing, 1998, pp.165.
  • [12] Sell T., Vyazovkin S., Wight C.A., Thermal Decomposition Kinetics of PBAN-Binder and Composite Solid Rocket Propellants, Combust. Flame, 1999, 119, 174-181.
  • [13] Yan Q.-L., Zeman S., Elbeih A., Recent Advances in Thermal Analysis and Stability Evaluation of Insensitive Plastic Bonded Explosives (PBXs), Thermochim. Acta, 2012, 537, 1-12.
  • [14] Felix S.P., Singh G., Sikder A.K., Agrawal J.P., Studies on Energetic Compounds, Part 33: Thermolysis of keto-RDX and Its Plastic Bonded Explosives Containing Thermally Stable Polymers, Thermochim. Acta, 2005, 426, 53-60.
  • [15] Yan Q.-L., Zeman S., Šelešovsky J., Svoboda R., Elbeih A., Thermal Behavior and Decomposition Kinetics of Formex-bonded Explosives Containing Different Cyclic Nitramines, J. Therm. Anal. Calorim., 2013, 111, 1419-1430.
  • [16] Yan Q.-L., Zeman S., Zhao F.-Q., Elbeih A., Non-isothermal Analysis of C4 Bonded Explosives Containing Different Cyclic Nitramines, Thermochim. Acta, 2013, 556, 6-12.
  • [17] Yan Q.-L., Zeman S., Elbeih A., Thermal Behavior and Decomposition Kinetics of Viton A Bonded Explosives Containing Attractive Cyclic Nitramines, Thermochim. Acta, 2013, 562, 56-64.
  • [18] Zeman S., Elbeih A., Yan Q.-L., Note on the Use of the Vacuum Stability Test in the Study of Initiation Reactivity of Attractive Cyclic Nitramines in Formex P1 Matrix, J. Therm. Anal. Calorim., 2013, 111, 1503-1506.
  • [19] Zeman S., Elbeih A., Yan Q.-L., Notes on the Use of the Vacuum Stability Test in the Study of Initiation Reactivity of Attractive Cyclic Nitramines in the C4 Matrix, J. Therm. Anal. Calorim., 2013, 112:1433–1437.
  • [20] Yan Q.-L., Zeman S., Elbeih A., Song Z.-W., Málek J., The Effect of Crystal Structure on the Thermal Reactivity of CL-20 and its C4 Bonded Explosives (I): Thermodynamic Properties and Decomposition Kinetics, J. Therm. Anal. Calorim., 2012, 112(2), 823-836.
  • [21] Yan Q.-L., Zeman S., Svoboda R., Elbeih A., Málek J., The Effect of Crystal Structure on the Thermal Reactivity of CL-20 and Its C4-bonded Explosives (II): Models for Overlapped Reactions and Thermal Stability, J. Therm. Anal. Calorim., 2012, 112(2), 837-849.
  • [22] Elbeih A., Zeman S., Jungová M., Vávra P., Attractive Nitramines and Related PBXs, Propellants Explos. Pyrotech., 2012, http://dx.doi.org/10.1002/prep.201200011.
  • [23] Zeman S., Elbeih A., Akštein Z., Preliminary Study of Several Plastic Explosives Based on Cyclic Nitramines, Chinese J. Energ. Mater., 2011, 16(1), 8-12.
  • [24] Elbeih A., Zeman S., Jungová M., Akštein Z., Effect of Different Polymeric Matrices on the Sensitivity and Performance of Interesting Cyclic Nitramines, Cent. Eur. J. Energ. Mater., 2012, 9(2), 131-138.
  • [25] Elbeih A., Zeman S., Jungová M., Vávra P., Akštein Z., Effect of Different Polymeric Matrices on Some Properties of Plastic Bonded Explosives, Propellants Explos. Pyrotech., 2012, 37(6), 676-684.
  • [26] Kim H.-S., Park B.-S., Characteristics of the Insensitive Pressed Plastic Bonded Explosive, DXD-59, Propellants Explos. Pyrotech., 1999, 24, 217-220.
  • [27] Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N., ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data, Thermochim. Acta, 2011, 520, 1-19.
  • [28] Moukhina E., Determination of Kinetic Mechanisms for Reactions Measured with Thermoanalytical Instruments, J. Therm. Anal. Calorim., 2012, 109(3), 1203-1214.
  • [29] Perejon A., Sanchez-Jimenez P.E., Criado J.M., Perez-Maqueda L.A., Kinetic Analysis of Complex Solid-state Reactions. A New Deconvolution Procedure, J. Phys. Chem. B, 2011, 115, 1780-1791.
  • [30] Yan Q.-L., Li X.-J., Zhang L.-Y., Li J.-Z., Li H.-L., Liu Z.-R., Compatibility Study of trans-1,4,5,8-Tetranitro-1,4,5,8-tetraazadecalin (TNAD) with Some Energetic Components and Inert Materials, J. Hazard. Mater., 2008, 160(2-3), 529-534.
  • [31] Turcotte R., Vachon M., Kwok Q.S.M., Wang R., Jones D.E.G., Thermal Study of HNIW (CL-20), Thermochim. Acta, 2005, 433, 105-115.
  • [32] Saw C.K., Kinetics of HMX and Phase Transitions: Effects of Grain Size at Elevated Temperature, 12th International Detonation Symposium, San Diego, CA, August 11-16, 2002.
  • [33] Sinditskii V.P., Egorshev V.Yu., Serushkin V.V., Levshenkov A.I., Berezin M.V., Filatov S.A., Smirnov S.P., Evaluation of Decomposition Kinetics of Energetic Materials in the Combustion Wave, Thermochim. Acta, 2009, 496, 1-12.
  • [34] Singh G., Felix S.P., Soni P., Studies on Energetic Compounds, Part 31: Thermolysis and Kinetics of RDX and Some of Its Plastic Bonded Explosives, Thermochim. Acta, 2005, 426, 131-139.
  • [35] Tarver C.M., Tran T.D., Thermal Decomposition Models for HMX-based Plastic Bonded Explosives, Combust. Flame, 2004, 137(1-2), 50-62.
  • [36] Singh G., Felix S.P., Soni P., Studies on Energetic Compounds, Part 28: Thermolysis of HMX and Its Plastic Bonded Explosives Containing Estane, Thermochim. Acta, 2003, 399(1-2), 153-165.
  • [37] Zeman S., A Study of Chemical Micro-mechanisms of Initiation of Organic Polynitro Compounds, in: High Energy Density Materials, (Klapötke T.M., Ed.), Series: Structure & Bonding, Vol. 125, Springer, New York, 2007, pp. 195-271.
  • [38] Majelis G.B., Nazin G.M., Rubtsov Y.I., Strunin V.A., Thermal Decomposition and Combustion of Explosives and Propellants, Taylor & Francis, 2003, pp. 80-85.
  • [39] Zeman S., A Study of Chemical Micro-mechanisms of Initiation of Organic Polynitro Compounds, in: Theoretical and Computational Chemistry, (Politzer P., Murray J., Eds.), Vol. 13, Energetic Materials, Part 2, Detonation, Combustion, Elsevier B.V., Amsterdam, 2003, pp. 25-52.
  • [40] Liao L.-Q., Yan Q.-L., Zheng Y., Song Z.-W., Li J.-Q., Liu P., Thermal Decomposition Mechanism of Particulate Core-shell KClO3-HMX Composite Energetic Material, Indian J. Eng. Mater. S, 2011, 18(5), 393-398.
  • [41] Brill T.B., Karpowicz R.J., Solid Phase Transition Kinetics. The Role of Intermolecular Forces in the Condensed-phase Decomposition of Octahydro- 1,3,5,7-tetranitro-1,3,5,7-tetrazocine, J. Phys. Chem., 1982, 86, 4260-4265.
  • [42] Chovancová M., Zeman S., Study of Initiation Reactivity of some Plastic Explosives by Vacuum Stability Test and Non-isothermal Differential Thermal Analysis, Thermochim. Acta, 2007, 460, 67-76.
  • [43] Loginov N.P., Surkova S.N., Effectiveness of the Action of Stabilizers in Explosive Compositions under Mechanical Loading (in russian), Fiz. Goreniya Vzryva, 2006, 42(1), 100.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59282695-3095-46a9-848e-919941df9190
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.