PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced feature extraction algorithms using oscillatory-mode pulsed Eddy Current techniques for aircraft structure inspection

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wykorzystanie techniki impulsowych prądów wirowych (PEC) w trybie oscylacyjnym do ulepszenia algorytmów do wyodrębnienia cech w kontroli struktury samolotu
Języki publikacji
EN
Abstrakty
EN
A review of the existing literature shows that modern pulsed eddy current (PEC) technique for flaw detection in aircraft structure inspection is typically carried out in aperiodic mode. At the same time, the unstable characteristic points of the EC signal usually used as informative parameters can restrict the potential of this excitation mode due to significant measurement errors. This article considers an advanced PEC method of NDT based on the oscillatory mode. To obtain the conditions concerned with different modes of EC probe response oscillations, an equivalent scheme of the "testing object - EC probe" system was developed and analyzed. The frequency and attenuation coefficient of natural oscillations are proposed as the informative parameters of the probe signals. The obtained mathematical model of the probe signals allows for the dependence of proposed signal parameters on the characteristics of the testing object to be evaluated. Herein, we first develop algorithmic software for determining and analyzing the discrete amplitude and phase characteristics of PEC NDT signals based on the simulation results. The errors of the natural frequency oscillations and the attenuation coefficient determination as well as the optimal time for its determination are analyzed in order to minimize the possible errors. Next, the proposed informative parameters are experimentally investigated using a set of specimens. The obtained results confirm the possibility of the proposed methodology to enhance the inspection procedures related to the electrical conductivity and geometric parameters measurements as well as the detected defect sizing.
PL
Przegląd istniejącej literatury wskazuje, że nowoczesna technika impulsowych prądów wirowych (PEC) do wykrywania wad w inspekcji konstrukcji lotniczych jest zwykle prowadzona w trybie aperiodycznym. Przy tym, niestabilne punkty charakterystyczne w sygnale prądów wirowych, które zwykle są używane jako parametry informacyjne, mogą ograniczać potencjał tego trybu wzbudzenia ze względu na znaczne błędy pomiarowe. W niniejszym artykule rozważano zaawansowaną metodę PEC dla badań nieniszczących (NDT) opartą na trybie oscylacyjnym. W celu uzyskania warunków związanych z różnymi trybami oscylacji odpowiedzi sondy prądów wirowych, opracowano i przeanalizowano równoważny schemat układu „obiekt badany - sonda”. Jako parametry informacyjne dla sygnałów brano częstotliwość i współczynnik tłumienia drgań własnych.Tak powstały model matematyczny sygnałów pozwala na ocenęzależności proponowanych parametrów sygnałów od właściwości obiektu badanego. Najpierw na podstawie wyników symulacji opracowano algorytmiczne oprogramowanie do wyznaczania i analizy dyskretnych charakterystyk amplitudowych i fazowych sygnałów PEC NDT. Analizowano błędy wyznaczania częstotliwości drgań własnych oraz współczynnika tłumienia, a także optymalny czas jego wyznaczania w celu minimalizacji możliwych błędów. Następnie, zaproponowane parametry informacyjne badano eksperymentalnie z wykorzystaniem zestawu próbek. Otrzymane wyniki potwierdzają możliwość zastosowania proponowanej metody do usprawnienia procedur inspekcyjnych związanych z pomiarami przewodności elektrycznej, parametrów geometrycznych oraz oceny rozmiarów wykrywanych defektów.
Rocznik
Strony
1--16
Opis fizyczny
Bibliogr. 34 poz., fot., rys., wzory
Twórcy
  • Department of Non-Destructive Testing Instruments and Systems, Faculty of Instrumentation Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37, Prosp. Peremohy, Kyiv, Ukraine, 03056
autor
  • Department of Non-Destructive Testing Instruments and Systems, Faculty of Instrumentation Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37, Prosp. Peremohy, Kyiv, Ukraine, 03056
  • Department of Non-Destructive Testing Instruments and Systems, Faculty of Instrumentation Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37, Prosp. Peremohy, Kyiv, Ukraine, 03056
  • Department of Non-Destructive Testing Instruments and Systems, Faculty of Instrumentation Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37, Prosp. Peremohy, Kyiv, Ukraine, 03056
  • Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5, Naukova St., Lviv, Ukraine, 79060
Bibliografia
  • [1] McMaster, R.C. and Mester, M.L., Eds., 1986, Nondestructive Testing Handbook: Electromagnetic Testing (Eddy current, Flux leakage and Microwave Nondestructive Testing). Second edition, American Society for NDT, USA.
  • [2] Ostash, O., Fedirko, V., Uchanin, V., Bychkov, S., Moliar, O., Semenets, O., Kravets, V. and Derecha, V., 2007, Mekhanika ruinuvannia i mitsnist materialiv [Fracture mechanics and strength of materials] (in Ukrainian), Vol. 9. Mitsnist i dovhovichnist materialiv litaka ta konstruktyvnykh elementiv [Strength and durability of airplane materials and structural elements] (in Ukrainian), Lviv, Spolom.
  • [3] Uchanin, V., 2013, Nakladni vykhrostrumovi peretvorjuvachi podvijnogho dyferencijuvannja [Surface Eddy Current Double Differentiation Sensors] (in Ukrainian), Lviv, Spolom.
  • [4] Baldev, R., Jayakumar, T. and Thavasimuthu, M., 2002, Practical non-destructive testing, Woodhcad Publishing, India.
  • [5] Johnson, M.J., 1997, Pulsed eddy-current measurements for materials characterization and flaw detection. University of Surrey, UK.
  • [6] Waidelich, D.L., 1954, "Coating Thickness Measurement Using Pulsed Eddy Currents," Proceedings of the National Electronics Conference, 10, pp. 500-507.
  • [7] Waidelich, D.L., 1955, "Pulsed Eddy Currents Gauge Plating Thickness", Electronics, 28(11), pp. 146-147.
  • [8] Waidelich, D.L., 1958, "Reduction of Probe-Spacing Effect in Pulsed Eddy Current Testing", ASTM, Symp. on Non-Destructive Tests in the field of Nuclear Energy, 223, pp. 191-200.
  • [9] Renken, C.J. and Myers, R.G., 1959, A Double Pulsed Eddy Current Testing System, University of Michigan, USA.
  • [10] Renken, C.J. and Myers, R.G., 1960, Metal Resistivity Measuring Device. USA, Patent no. 2965840.
  • [11] Shkarlet, Yu.M., and Russkevych, Yu.N., 1969, Ympulsnyi ynduktsyonnyi sposob yzmerenyia parametrov yzdelyi [Pulsed induction method of measuring product parameters] (in Russian), USSR, Inv. cert. 238856.
  • [12] Vasic, D., Bilas, V. and Ambrus, D., 2003, "Pulsed Eddy-Current Nondestructive Testing of Ferromagnetic Tubes," Proceedings of the 20th IEEE Instrumentation Technobgy Conference, (Cat. No.03CH37412), 2, pp. 1120-1125. doi: 10.1109/IMTC.2003.1207928.
  • [13] Morris, R.A., 1975, "Quantitative Pulsed Eddy Current Analysis," Proc. of the 10th Symposium on NDE, pp. 90-97.
  • [14] Thyagarajan, K., Maxfield, B., Balasubramaniam, K. and Krishnamurthy C.V., 2008, "Pulsed Eddy Current Imaging of Corrosion Pits," Proc. National Seminar on Non-Destructive Evaluation, Dec. 7-9, 2006, Hyderabad.
  • [15] Plotnikov, Y. and Bantz, W.J., 2005, "Subsurface defect detection in metals with pulsed eddy current," AIP Conference Proceedings 760, 447. doi: 10.1063/1.1916710.
  • [16] Cadeau, T. and Krause, T.W., 2009, "Pulsed eddy current probe design based on transient circuit analysis," AIP Conference Proceedings 1096, 327. doi: 10.1063/1.3114222.
  • [17] Yang, G., Tamburrino, A., Udpa, L. and Udpa, S., 2010, "Pulsed Eddy-Current Based Giant Magnetoresistive System for the Inspection of Aircraft Structures," IEEE Trans. Magn., 46(3). pp. 910-917. doi: 10.1109/TMAG.2009.2032330.
  • [18] Sophian, A. and Tian, G.Y., 2005. "Defect classification using a new feature for pulsed eddy current sensors." NDT&E International. 38(1), pp. 77-82. doi: 10.1016/j.ndteint.2004.06.001.
  • [19] Sophian, A., Tian, G.Y. Taylor, D. and Rudlin, J., 2005, "Wavelet-based PGA defect classification and quantification for pulsed eddy current NDT," IEE Proc.-Sci. Meas. Technol., 152(4), pp. 141-148. doi: 10.1049/ip-smt:20045011.
  • [20] Thompson, D.O. and Chimenti, D.E., Eds., 1998. Quantitative Assignment of Corrosion in Aircraft Structures Using Scanning Pulsed Eddy Current, Plenum Press. New York, NY.
  • [21] Morozov, M., Tian, G.Y. and Withers, P.J., 2010, "The pulsed eddy current response io applied loading of various aluminum alloys," NDT&E International. 43. pp. 493-500. doi: 10. 1016/j.ndteint.2010.05-004.
  • [22] He, Y., Zhang, H., Simm, A. and Jackson, P., 2012, "Steel Corrosion Characterization Using Pulsed Eddy Current Systems," IEEE Sensors Journal, 12(6), pp. 2113-2120. doi: 10.1109/JSEN.2012.2184280.
  • [23] Lai, Sh., Chen, H. and Fu. Y., 2013, "Buried Crack Detection in Aircraft Multi-layer Structure Based on Pulsed Eddy Current," Applied Mechanics and Materials, 330, pp. 536-541. doi: 10.4028/www.scientific.net/AMM.330.536.
  • [24] He, Y., Luo, F., Pan, M., Weng, F., Hu, X., Gao, J. and Liu, B., 2010, "Pulsed eddy current technique for defect detection in aircraft riveted structure," NDT&E International, 43(2), pp. 176-181. doi: 10.1016/j.ndteint.2009.10.010.
  • [25] Technical Committee: ISO/TC 135/SC 4 Eddy current testing. 2017. Pulsed eddy current testing of ferromagnetic metallic components. BS ISO 20669:2017.
  • [26] Buchma, I.M., Repetylo, T.M. and Ferchuk, K.V. 2015. Zasoby vykhrostrumovoi diahnostyky koroziinoho starnt statevykh lystovykh konstruktsii [Aids of eddy current diagnostics of corrosion condition of steel sheet structures] (in Ukrainian). Lviv Polytechnic Publishing House. Lviv.
  • [27] Korn, G.A. and Korn, T.M., 1968, Mathematical Handbook for Scientists and Engineers. Published by McGraw-Hill Book Company. New York. NY.
  • [28] Bendat, J.S., and Piersol, A.G., 2010, Random Data: Analysis and Measurement Procedures, Wiley, Hoboken. NJ.
  • [29] Poularikas, A.D., 2010, Transforms and Applications Handbook, CRC Press LLC, Taylor & Francis Group, Boca Raton. New York. NY.
  • [30] Lysenko, I., Eremenko, V., Kuts, Y., Protasov, A. and Uchanin, V., 2020, "Advanced Signal Processing Methods for Inspection of Aircraft Construction Materials." Transactions on Aerospace Research. 259(2). pp. 27-35, doi: 10.2478/tar2020-0008.
  • [31] Kuts, Y., Protasov, A., Lysenko, I. and Dugin, O., 2018, "Analysis of the uncertainty of measurement in pulsed eddy current signal evaluation," Proc. of 12th European Conference on Non-Destructive Testing (ECNDT2018). June 11-15, 2018, Sweden, The e-Journal of Nondestructive Testing. 23(8). pp. 1-8.
  • [32] Kuts, Y., Protasov, A., Lysenko, L., Alexiev, A. and Dugin O., 2019, "Optimization of Analysis Time of Pulsed Eddy Current Non-destructive Testing Signals" (in Russian), Bulgarian Society for NDT. Int. Journal "NDT Days”. 2(1). pp. 58-63. https://www.bg-s-ndt.org/journal/vol2/JNDTD-v2-nl-a07.pdf
  • [33] Dugin, O., Kuts, Y., Lysenko, I. and Protasov, A., 2016, "Improvement of the Eddy Current Method of Non-Destructive Testing with Pulsed Mode Excitation," Proc. of 19th World Conference on Non-Destructive Testing (WCNDT 2016), June 13-17, 2016, Germany. The e-Journal of Nondestructive Testing. 21(7). pp. 1-8.
  • [34] Lysenko, Y., Kuts, Y., Dugin, A., Zakrevskii, A., 2016. "Analysis of an Eddy-Current Transducer with Impulsive Excitation in the Nondestructive Testing of Cylindrical Objects," Materials Science. 52(3). pp 431-437. doi: 10.1007/sl1003-016-9975-4.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-591abb6b-1249-4172-8527-a145f090accd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.