Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Monitorowanie odkształceń termicznych i gruntowych w celu wczesnego wykrywania erupcji wulkanicznych: studium przypadku wulkanu Taal na Filipinach
Języki publikacji
Abstrakty
Volcanic eruptions, such as those of Krakatau and Pinatubo, are uncontrollable natural phenomena with the potential for widespread destruction, including the global climate. Early detection of volcanic activity is crucial for mitigating risks and preventing loss of life. This study focuses on the Taal volcano, located in the Batangas region of the Philippines, which erupted in January 2020 after being dormant for 43 years. Using satellite remote sensing data, the study employed the Land Surface Temperature (LST) analysis, the Normalized Temperature Index (NTI), and ground deformation monitoring using radar-based the Small Baseline Subset (SBAS) InSAR techniques to detect early warning signs of volcanic unrest.
Erupcje wulkanów, takie jak Krakatau i Pinatubo, to niekontrolowane zjawiska naturalne, które mogą spowodować rozległe zniszczenia, w tym globalny klimat. Wczesne wykrycie aktywności wulkanicznej ma kluczowe znaczenie dla łagodzenia ryzyka i zapobiegania utracie życia. Niniejsze badanie koncentruje się na wulkanie Taal, znajdującym się w regionie Batangas na Filipinach, który wybuchł w styczniu 2020 r. po 43 latach uśpienia. Wykorzystując dane z teledetekcji satelitarnej, badanie wykorzystało analizę temperatury powierzchni ziemi (LST), znormalizowany wskaźnik temperatury (NTI) i monitorowanie deformacji gruntu za pomocą opartych na radarze technik InSAR Small Baseline Subset (SBAS) w celu wykrycia wczesnych oznak ostrzegawczych niepokojów wulkanicznych.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
157--169
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Faculty of Geo-Data Science, Geodesy, and Environmental Engineering, AGH University, Kraków
autor
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology
Bibliografia
- Chan H., Konstantinou K. 2020. Multiscale and multitemporal surface temperature monitoring by satellite thermal infrared imagery at Mayon Volcano. Geophysical Research Letters, 25(3), 901–913.
- Chen H., Liu Z., Li X. 2020. Monitoring volcanic activity in the Pacific Ring of Fire using InSAR data from Sentinel-1. Journal of Volcanology and Geothermal Research, 391, 106–116.
- Chen K., Ning L., Liu Z., Liu J., Yan M., Sun W., Yuan L., Lv G., Li L., Jin C., Shi Z. 2020. Impacts of major volcanic eruptions over the past two millennia on both global and Chinese climates: A review. Science China Earth Sciences, 63(5), 707–722. https://doi.org/10.1007/s11430-019-9603-3
- COMET Volcanic and Magmatic Deformation Portal. 2021. InSAR Monitoring of Volcanic Activity. https://comet.nerc.ac.uk/comet-volcano-portal
- Coppola D. 2021. Advances in satellite thermal monitoring of volcanoes. Journal of Volcanology and Geothermal Research, 392, 1125–1140.
- Coppola D., Cigolini C., Donne D.D., Martino M.D. 2008. Thermal anomalies at Stromboli volcano from MODIS data. Remote Sensing, 21(5), 1032–1040.
- Ganci G., Vicari A., Fortuna L., Negro C. 2011. The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data. Remote Sensing, 19, 673–688. https://doi.org/10.1016/j.rse.2010.04.010
- Global Volcanism Program. 2024. [Database] Volcanoes of the World (v. 5.2.4; 21 Oct 2024). Distributed by Smithsonian Institution, compiled by Venzke E. https://doi.org/10.5479/si.GVP.VOTW5-2024.5.2
- Greicius T. 2021. NASA Satellites Detect Signs of Volcanic Unrest Years before Eruptions. NASA
- Jet Propulsion Laboratory. https://www.jpl.nasa.gov/news/nasa-satellites-detect-signs-ofvolcanic-unrest-years-before-eruptions
- Greicius T. 2022. NASA Satellites detect signs of volcanic unrest years before eruptions. NASA JPL. https://www.jpl.nasa.gov/news
- Jones L., Harris A. 2019. MODIS thermal analysis of recent eruptions at Copahue. Remote Sensing of Environment, 112(4), 1250–1262.
- Lazecky M., Spaans K., Gonzalez P. 2020. LiCSAR: An Automatic InSAR Tool for Measuring and Monitoring Tectonic and Volcanic Activity. Remote Sensing, 12(15), 2430. https://doi.org/10.3390/rs12152430
- Lewandowski A. 2021. Jump-Start SAR Data Analysis in the Cloud with ASF’s OpenSARLab. Alaska Satellite Facility. https://www.youtube.com/watch?v=tq8nZpsWK6k
- Massimetti F., Coppola D., Laiolo M., Valade S., Cigolini C., Ripepe M. 2020. Volcanic HotSpot Detection Using SENTINEL-2: A Comparison with MODIS–MIROVA Thermal Data. Remote Sensing, 12(5), 820. https://doi.org/10.3390/rs12050820
- MIROVA. 2021. Middle InfraRed Observations of Volcanic Activity. MIROVA Web Portal. https://www.mirovaweb.it
- Newhall C.G., Self S. 1982. The Volcanic Explosivity Index (VEI): An estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research, 87(C2), 1231–1238. https://doi.org/10.1029/JC087iC02p01231
- OpenScienceLab. 2020. Time-Series Analysis of Ground Deformation. Alaska Satellite Facility. https://opensciencelab.asf.alaska.edu
- Philippine Institute of Volcanology and Seismology (PHIVOLCS). 2020. Taal Volcano Update 2020. https://www.phivolcs.dost.gov.ph
- Pogoda T. 2017. Dwie katastrofy ochroniły Ziemię przed większą. Dobra Pogoda, 1(2), 110–112. https://dobrapogoda24.pl/artykul/wulkan-pinatubo-katastrofa-na-ziemi
- Rothery D.A., Coppola D., Saunders C. 2005. MODVOLC System: Thermal Monitoring of Volcanic Activity. http://modis.higp.hawaii.edu/
- Suarez-Herrera C.A., Toyos G., Leily J. 2021. Analysis of thermal anomalies at Copahue Volcano between October 2011 and the December 2012 eruption with MODIS. Geophysical Research Letters, 17(5), 303–315.
- Trepińska J. 2022. Ewolucyjne zmiany klimatu Ziemi i katastrofalne zmiany pogodowe. Science Journal, 12(1), 223–240.
- Trepińska J. 2022. Katastrofalne zmiany pogodowe w historii Ziemi. Polska Akademia Nauk. USGS Volcano Hazards Program. 2021. Volcanoes Can Affect Climate. U.S. Geological Survey. https://www.usgs.gov
- Wan Z., Dozier J. 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. Remote Sensing of Environment, 20, 233–247. https://doi.org/10.1016/0034-4257(90)90074-t
- Wan Z., Li W. 2008. Impact of MODIS calibration improvements on land surface temperature retrievals. Remote Sensing of Environment, 112(2), 122–134.
- Wolfe J. 2020. Volcanoes and Climate Change. NASA. https://earthobservatory.nasa.gov
- Wright R. 2015. MODVOLC: 14 years of autonomous observations of effusive volcanism from space. Geophysical Research Abstracts, 17, 1–3. https://doi.org/10.5194/acp-21-13425-2021
- Zhou Z., He Z. 2021. Time series analysis of Sentinel-1 InSAR data for ground deformation monitoring. IEEE Transactions on Geoscience and Remote Sensing, 59(7), 4961–4973.
- Zhuo Z., Kirchner I., Pfahl S., Cubasch U. 2021. Climate impact of volcanic eruptions: The sensitivity to eruption season and latitude in MPI-ESM ensemble experiments. Atmospheric Chemistry and Physics, 21, 13425–13442. https://doi.org/10.5194/acp-21-13425-2021
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-591a44af-0837-4b7f-9671-cae4ccb490ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.