PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time reversal seismic source imaging using peak average power ratio (PAPR) parameter

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The time reversal method has become a standard technique for the location of seismic sources. It has been used both for acoustic and elastic numerical modelling and for 2D and 3D propagation models. Although there are many studies concerning its application to point sources, little so far has been done to generalise the time reversal method to the study of sequences of seismic events. The need to describe such processes better motivates the analysis presented in this paper. The synthetic time reversal imaging experiments presented in this work were conducted for sources with the same origin time as well as for the sources with a slight delay in origin time. For efficient visualisation of the seismic wave propagation and interference, a new coefficient—peak average power ratio—was introduced. The paper also presents a comparison of visualisation based on the proposed coefficient against a commonly used visualisation based on a maximum value.
Czasopismo
Rocznik
Strony
299--308
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • AGH University of Science and Technology, Kraków, Poland
autor
  • AGH University of Science and Technology, Kraków, Poland
autor
  • AGH University of Science and Technology, Kraków, Poland
Bibliografia
  • 1. Anderson BE, Guyer RA, Ulrich TJ, Johnson PA (2009a) Time reversal of continuous-wave, steady-state signals in elastic media. Appl Phys Lett 94(11):111908. doi:10.1063/1.3097811
  • 2. Anderson BE, Ulrich TJ, Griffa M, Le Bas P-Y, Scalerandi M, Gliozzi AS, Johnson PA (2009b) Experimentally identifying masked sources applying time reversal with the selective source reduction method. J Appl Phys 105(8):083506. doi:10.1063/1.3079517
  • 3. Anderson BE, Griffa M, Ulrich TJ, Johnson PA (2011), Time reversal reconstruction of finite sized sources in elastic media. J Acoust Soc Am 130(4):EL219–EL225. doi:10.1121/1.3635378
  • 4. Artman B, Podladtchikov I, Witten B (2010) Source location using time-reverse imaging. Geophys Prospect 58(5):861–873. doi:10.1111/j.1365-2478.2010.00911
  • 5. Baysal E, Kosloff D, Sherwood JWC (1983) Reverse time migration. Geophysics 48(11):1514–1524. doi:10.1190/1.1441434
  • 6. Blomgren P, Papanicolaou G, Zhao H (2002) Super-resolution in time-reversal acoustics. J Acoust Soc Am 111(1):230–248. doi:10.1121/1.1421342
  • 7. Cerjan C, Kosloff D, Kosloff R, Reshef M (1985) A non-reflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics 50(4):705–708. doi:10.1190/1.1441945
  • 8. Debski W (2015) Using meta-information of a posteriori Bayesian solutions of the hypocentre location task for improving accuracy of location error estimation. Geophys J Int 201(3):1399–1408. doi:10.1093/gji/ggv083
  • 9. Debski W, Klejment P (2016) The new algorithm for fast probabilistic hypocenter locations. Acta Geophys 64(6):2382–2409. doi:10.1515/acgeo-2016-0111
  • 10. Douglas A (1967) Joint epicentre determination. Nature 215(5096):47–48. doi:10.1038/215047a0
  • 11. Fichtner A, Bunge H-P, Igel H (2006) The adjoint method in seismology I. Theory. Phys Earth Planet Inter 157(1–2):86–104. doi:10.1016/j.pepi.2006.03.016
  • 12. Fink M (1992) Time reversal of ultrasonic field—part I: basic principles. IEEE Trans Ultrason Ferroelectr Freq Control 39(5):555–566. doi:10.1109/58.156174
  • 13. Fink M (1997) Time reversed acoustics. Phys Today 50(3):34–40. doi:10.1063/1.881692
  • 14. Fink M, Prada C, Wu F, Cassereau D (1989) Self-focusing in inhomogeneous media with time reversal acoustic mirrors. IEEE Ultras Symp Proc 1(2):681–686. doi:10.1109/ULTSYM.1989.67072
  • 15. Gajewski D, Tessmer E (2005) Reverse modelling for seismic event characterization. Geophys J Int 163(1):276–284. doi:10.1111/j.1365-246X.2005.02732.x
  • 16. Hu LZ, McMechan GA (1988) Elastic finite difference modelling and imaging for earthquake sources. Geophys J Int 95(2):303–313. doi:10.1111/j.1365-246X.1988.tb00469.x
  • 17. Kawakatsu H, Montagner J-P (2008) Time-reversal seismic source imaging and moment-tensor inversion. Geophys J Int 175(2):686–688. doi:10.1111/j.1365-246X.2008.03926.x
  • 18. Kremers S, Fichtner A, Brietzke GB, Igel H, Larmat C, Huang L, Kaser M (2011) Exploring the potentials and limitations of the time reversal imaging of finite seismic sources. Solid Earth 2(1):95–105. doi:10.5194/se-2-95-2011
  • 19. Larmat C, Montagner J-P, Fink M, Capdeville Y, Tourin A, Clévédé E (2006) Time-reversal imaging of seismic sources and application to the great Sumatra earthquake. Geophys Res Lett 33(19):L19312. doi:10.1029/2006GL026336
  • 20. Larmat C, Guyer RA, Johnson PA (2010) Time-reversal methods in geophysics. Phys Today 63(8):31–35. doi:10.1063/1.3480073
  • 21. Levander A (1988) Fourth-order finite-difference P-SV seismograms. Geophysics 53(11):1425–1436. doi:10.1190/1.1442422
  • 22. McMechan G (1983) Migration by extrapolation of time-dependent boundary values. Geophys Prospect 31(3):413–420. doi:10.1111/j.1365-2478.1983.tb01060.x
  • 23. Parvulescu A, Clay CS (1965) Reproducibility of signal transmission in the ocean. Radio Electron Eng 29(4):223–228. doi:10.1049/ree.1965.0047
  • 24. Rudzinski L, Debski W (2011) Extending the double-difference location technique to mining applications—part I: numerical study. Acta Geophys 59(4):785–814. doi:10.2478/s11600-011-0021-5
  • 25. Rudzinski L, Debski W (2012) Extending the double difference location technique—improving hypocenter depth determination. J Seismol. 17(1):83–94. doi:10.1007/s10950-012-9322-7
  • 26. Saenger EH (2011) Time reverse characterization of sources in heterogeneous media. NDT E Int 44(8):751–759. doi:10.1016/j.ndteint.2011.07.011
  • 27. Saenger EH, Kocur GK, Jud R, Torrilhon M (2011) Application of time reverse modelling on ultrasonic non-destructive testing of concrete. Appl Math Model 35(2):807–816. doi:10.1016/j.apm.2010.07.035
  • 28. Steiner B, Saenger EH (2010) Comparison of 2D and 3D time reverse modelling for tremor source localization. SEG Tech Program Expand Abstr 2010:2171–2175. doi:10.1190/1.3513275
  • 29. Steiner B, Saenger EH (2012) Comparison of 2D and 3D time-reverse imaging—a numerical case study. Comp Geosci 46:174–182. doi:10.1016/j.cageo.2011.12.005
  • 30. Steiner B, Saenger EH, Schmalholz SM (2008) Time reverse modelling of low-frequency microtremors: application to hydrocarbon reservoir localization. Geophys Res Lett 35(3):L03307. doi:10.1029/2007GL032097
  • 31. Tarantola A (1988) Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation. Pure Appl Geophys 128(1):365–399. doi:10.1007/BF01772605
  • 32. Udias A, Madariaga R, Buforn E (2014) Source mechanisms of earthquakes. Theory and practice. Cambridge University Press, Cambridge
  • 33. Virieux J (1986) P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(4):889–901. doi:10.1190/1.1442147
  • 34. Waldhauser F, Ellsworth W (2000) A double-difference earthquake location algorithm: method and application. Bull Seismol Soc Am 90(6):1353–1368. doi:10.1785/0120000006
  • 35. Willis ME, Lu R, Burns DR, Toksoz MN, Campman X, de Hoop M (2006) A novel application of time reversed acoustics: salt dome flank imaging using walk away VSP surveys. Geophysics 71(2):A7–A11. doi:10.1190/1.2187711
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5915f2cd-5eca-40f3-8bfc-90ca50bbf36a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.