PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of a Bandgap in the Ultrasonic Phononic Coating

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work concerns the study of the coatings for the ultrasound frequency range as a quasi one-dimensional phononic crystal structure protecting a sea object against high resolution active sonar in the frequency range most commonly found for this type of equipment. The topology of the examined structure was optimized to obtain a band gap in the 2.2-2.3 MHz frequency band. For this purpose, a genetic algorithm was used, which allows for optimal distribution of individual elements of the ultrasound multilayer composite. By optimal distribution is meant to achieve a structure that will allow minimal reflectance in a given frequency range without height reflectance peaks with a small half width. Analysis of the wave propagation was made using the Transfer Matrix Method (TMM). As part of the research, 15 and 20-layer structures with reflectance at the level of 0.23% and 0.18%, respectively, were obtained. increasing the number of layers in the analyzed structures resulted in finding such a distribution in which a narrow band of low reflectance was obtained, such distributions could also be used as bandpass filters. The use of a genetic algorithm for designing allows to obtain modern coatings, the characteristics of which result from the structure.
Twórcy
  • Czestochowa University of Technology, Department of Mechanics and Fundamentals of Machinery Design, Faculty of Mechanical Engineeringand Computer Science, 73 Dąbrowskiego 73, 42-201 Częstochowa, Poland
  • Czestochowa University of Technology, Department of Mechanics and Fundamentals of Machinery Design, Faculty of Mechanical Engineeringand Computer Science, 73 Dąbrowskiego 73, 42-201 Częstochowa, Poland
  • Czestochowa University of Technology, Department of Mechanics and Fundamentals of Machinery Design, Faculty of Mechanical Engineeringand Computer Science, 73 Dąbrowskiego 73, 42-201 Częstochowa, Poland
  • Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, Blvd. D. Mangeron 71, 700050 Lasi, Romania
Bibliografia
  • [1] M. Sigalas, E. N. Economou, J. Sound Vib. 158 (2), 377-382 (1992), https://doi.org/10.1016/0022-460X(92)90059-7
  • [2] S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Phys. Rev. Lett. 71 (13), 2022-2025 (1993), https://doi.org/10.1103/PhysrevLett.71.2022
  • [3] M. S. Kushwaha, Int. J. Mod. Phys. B 10, 977-1094 (1996).
  • [4] Y. Tanaka, T. Yano, S-I. Tamur, Wave Motion 44, 501-512 (2007), https://doi.org/10.1016/j.wavemoti.2007.02.009
  • [5]Y. Pennec, B. Djafari-Rouhani, H. Larabi, J. Vasseur, A.-C. Hladky-Hennion, Phys. Status Solidi C 6 (9), 2080-2085 (2009), doi: 10.1002/pssc.200881760
  • [6] Y. F. Li, F. Meng, S. Li, B. Jia, S. Zhou, X. Huang, Phys. Lett. A 382 (10), 679-684 (2018) https://doi.org/10.1016/j.physleta.2017.12.050
  • [7] S. Alagoz, O. A. Kaya, B. B. Alagoz, Appl. Acoust. 70, 1400-1405 (2009), doi:10.1016/j.apacoust.2009.06.001
  • [8] V. Pennec, J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, P. A. Deymier, Surf. Sci. Rep. 65 (8), 229-291 (2010), doi: 10.1016/j.surfrep.2010.08.002
  • [9] X. F. Li, X. Ni, L. A. Feng, M. H. Lu, C. He, Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011), https://doi.org/10.1103/PhysrevLett.106.084301
  • [10] O. R. Bilal, M. I. Hussein, Phys. Rev. E 84 (6), 065701 (2011), doi: 10.1103/PhysRevE.84.065701
  • [11] V. M. García-Chocano, S. Cabrera, J. Sánchez-Dehesa, Appl. Phys. Lett. 101, 184101 (2012), https://doi.org/10.1063/1.4764560
  • [12] S. Garus, W. Sochacki, J. App. Math. Comp. Mech. 17 (4), 19-24 (2018), doi: 10.17512/jamcm.2018.4.03
  • [13] S. M. Dimitrijevi ́c, V. M. García-Chocano, F. Cervera, E. Roth, J. Sánchez-Dehesa, Materials 12, 2806 (2019), doi: 10.3390/ma12172806
  • [14] M. N. Armenise, C.E. Campanella, C. Ciminelli, F. Dell’Olio, V. M. N. Passaro, Physcs. Proc. 1 (3), 357-364 (2010), doi: 10.1016/j.phpro.2010.01.047
  • [15] X. Yu, Z. Lu, T. Liu, L. Cheng, J. Zhu, F. Cui, J. Sound Vib. 449, 140-156 (2019), https://doi.org/10.1016/j.jsv.2019.02.042
  • [16] W.-Q. Zhang, X. Zhang, F.-G. Wu, Y.-W. Yao, S.-F. Lu, H.-F. Dong, Z.-F. Mu, J.-B. Li, Phys. Lett. A 382, 423-427 (2018), doi: 10.1016/j.physleta.2017.12.014
  • [17] H. Bai, Z. Zhan, J. Liu, Z. Ren, Materials 12 (16), 2509, (2019), doi: 10.3390/ma12162509
  • [18] K. Boswarva, A. Butters, C. J. Fox, J. A. Howe, B. Narayanaswamy, Cont. Shelf Res. 168, 39-47 (2018), https://doi.org/10.1016/j.csr.2018.09.005
  • [19] N. M. Bacheler, K. W. Shertzer, J. A. Buckel, P. J. Rudershausen, B. J. Runde, Mar. Ecol. Prog. Ser. 606, 133-150 (2018), doi: https://doi.org/10.3354/meps12780
  • [20] M. P. Simmonds, S. J. Dolman, M. Jasny, E. C. M. Parsons, L. Weilgart, A. J. Wright, R. Leaper, J. Ocean Technol. 9, 71-90 (2014).
  • [21] M. P. Bendsøe, O. Sigmund, Topology optimization: theory, methods and applications, Springer, 2004, doi 10.1007/978-3-662-05086-6
  • [22] D. Zhao, H. Zhao, H. Yang, J. Wen, Appl. Acoust. 140, 183-187 (2018), https://doi.org/10.1016/j.apacoust.2018.05.027
  • [23] H. L. Zhong, F. G. Wu, L. N. Yao, Acta. Phy. Sin. 55, 275-280 (2006), https://doi.org/10.7498/aps.55.275
  • [24] Z. F. Liu, B. Wu, C. F. He, Waves random Complex Media 24 (3), 286-305 (2014), https://doi.org/10.1080/17455030.2014.901582
  • [25] H. W. Dong, X. X. Su, Y. S. Wang, C. Zhang, Struct. Multidiscip. O. 50 (4), 593-604 (2014), https://doi.org/10.1007/s00158-014-1070-6
  • [26] Y. F. Li, X. Huang, S. Zhou, Materials 9 (3), 186 (2016), https://doi.org/10.3390/ma9030186
  • [27] G. A. Gazonas, D.S. Weile, R. Wildman, A. Mohan, Int. J. Solids Struct. 43, 5851-5866 (2006), https://doi.org/10.1016/j.ijsolstr.2005.12.002
  • [28] M. Hussein, K. Hamza, G. Hulbert, R. Scott, K. Saitou, Struct. Multidiscip. O. 31, 60-75 (2006), https://doi.org/10.1007/s00158-005-0555-8
  • [29] O. Dazel, J. P. Groby, B. Brouard, C. Potel, J. Appl. Phys. 113, 083506 (2013), http://dx.doi.org/10.1063/1.4790629
  • [30] S. Garus, W. Sochacki, M. Bold, Engineer. Mechan. 229-232 (2018), doi: 10.21495/91-8-229
  • [31] M. M. Sigalas, C. M. Soukoulis, Phys. Rev. B 51, 2780 (1995), https://doi.org/10.1103/PhysRevB.51.2780
  • [32] M. I. Pop, N. Cretu, Wave Motion 65, 105-111 (2016), https://doi.org/10.1016/j.wavemoti.2016.04.011
  • [33] S. Garus, W. Sochacki, J. App. Math. Comp. Mech. 16 (4), 17-27 (2017), doi: 10.17512/jamcm.2017.4.02
  • [34] P. G. Luan, Z. Ye, Phys. Rev. E 63 (6), 066611 (2001), https://doi.org/10.1103/PhysRevE.63.066611
  • [35] J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann. Arbor, MI, 1975.
  • [36] H. L. Zhong, F. G. Wu, L. N. Yao, Acta Phys. Sin. 55 (2006) 275-280.
  • [37] X. K. Han, Z. Zhang, Wave Motion 93 (2020) 102496, http://dx.doi.org/10.1016/j.wavemoti.2019.102496
  • [38] Z. F. Liu, B. Wu, C. F. He, Wave random Complex 24 (3), 286-305 (2014).
  • [39] S. Garus, W. Sochacki, Wave Motion 98 (2020) 102645, https://doi.org/10.1016/j.wavemoti.2020.102645
  • [40] M. Möser, Engineering Acoustics, An introduction to Noise Control, Springer, Berlin, Heidelberg, 2009, https://doi.org/10.1007/978-3-540-92723-5
  • [41] M. P. Norton, D. G. Karczub, Fundamentals of Noise and Vibration Analysis for engineers, Cambridge University Press, Cambridge, 2003.
  • [42] M. Nabiałek, Arch. Metall. Mater. 60 3 (2015), 1987-1991, doi: 10.1515/amm-2015-0337
  • [43] K. Błoch, M. Nabiałek, J. Gondro, M. Szota, Arch. Metall. Mater. 60, 2019-20233 (2015), doi: 10.1515/amm-2015-0342.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59100eba-f82a-4298-8923-c2a87afe044e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.