Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A novel synthesis process and characterization of nano-calcium fluoride (n-CaF2) single crystal prepared from phosphogypsum waste. The phosphogypsum (CaSO4 2H2O) powder has been mechanically mixed with NH4F in presence of a controlled amount of water. The mixture still sintered for 48 hours until the formation of nano calcium fluoride particles. The n-CaF2 particles have been characterized by several techniques, The techniques utilized included X-ray diffraction (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM). Therefore, it was confirmed that very pure n-CaF2 was obtained with a Ca/F ratio of 0.5 and an average crystalizing size measured according to the Debye-Scherrer equation of 11 nm. Based on the findings reached, The characterization data revealed successful synthesis of n-CaF2 from phosphogypsum. Additionally, the adsorption performance of the elaborated n-CaF2 was tested in Reactive Blue 21 (RB21) anionic dye removal, Adsorption tests were conducted in a batch reactor, focusing on key factors such as contact time, which can significantly influence the adsorption results. adsorption amount, pH, and dye concentration were tested. Hence results show an important adsorption performance of n-CaF2 with Reactive Blue 21 removal rate up to 90%.
Czasopismo
Rocznik
Tom
Strony
62--71
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Laboratory of Organic Bioorganic and Environmental Chemistry, Chouaib Doukkali University.Morocco
autor
- Laboratory of Organic Bioorganic and Environmental Chemistry, Chouaib Doukkali University.Morocco
autor
- Faculty of Sciences, University Chouaib Doukkali, Chemistry Department, Laboratory of Materials’ Physical, Chemicals, El Jadida, Morocco
autor
- Laboratory of Organic Bioorganic and Environmental Chemistry, Chouaib Doukkali University.Morocco
autor
- Laboratory of Organic Bioorganic and Environmental Chemistry, Chouaib Doukkali University.Morocco
- Higher School of Education and Training, Chouaib Doukkali University, Morocco
autor
- Laboratory of Chemical Processes and Applied Materials, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal, Morocco
autor
- Laboratory of Organic Bioorganic and Environmental Chemistry, Chouaib Doukkali University.Morocco
autor
- Laboratory of Spectroscopy, Molecular Modelling, Materials, Nanomaterials, Water and Environnement, ENSAM University Mohammed V in Rabat, Morocco
autor
- Laboratory of Organic Bioorganic and Environmental Chemistry, Chouaib Doukkali University.Morocco
- Higher School of Education and Training, Chouaib Doukkali University, Morocco
autor
- Laboratory of Organic Bioorganic and Environmental Chemistry, Chouaib Doukkali University.Morocco
Bibliografia
- 1. Alzahrani J.S., Midala I.H., Kamari H.M., Al-Hada N.M., Tim C.K., Nidzam N.N.S., Alrowaili Z.A., AlBuriahi M.S., Alrowaili Z.A., Al-Buriahi M.S. 2022. Effect of calcination temperature on the structural and optical properties of (ZnO) 0.8 (ZrO2) 0.2 nanoparticles. J. Inorg. Organomet. Polym. Mater., 32, 17551765. https://doi.org/10.1007/s10904-022-02238-8
- 2. Bensalah A., Mortier M., Patriarcheb G., Gredin P., Vivien D. 2006. Synthesis and optical characterizations of undoped and rare. J. Solid. State Chem. 179, 2636–2644. https://doi.org/10.1016/j. jssc.2006.05.011
- 3. Bhadane M.S., Gavhane K.H., Ghemud V.S., Deshmukh S.B., Bagekari Y.G., Kulkarni P.P., Dahiwale S.S., Bhoraskar V.N., Dhole S.D. 2023. 6 MeV electron beam induced TL dosimetric properties of CaF2: Dy nanophosphor. Opt. Mater. 136, 113452. https://doi.org/10.1016/j.optmat.2023.113452
- 4. Boruah. T., Das S.K., Kumar G., Mondal S., and Dey R.S. 2022 Dual active sites in a triazine-based covalent organic polymeric framework promoting oxygen reduction reaction. Chem. Comm. 58(36), 5506–5509. https://doi.org/10.1039/D2CC00865C
- 5. Cechinel M.A.P., de Guidolin T.O., da Silveira A.R., Tasca J.S., Montedo O.R.K. 2022. Coal mining pyritic waste in Fenton-like processes: Raw and purified catalysts in Reactive Blue 21 dye discoloration. Sci. Total Environ. 807, 150823 https://doi.org/10.1016/j.scitotenv.2021.150823
- 6. Dey N., Kamatchi C., Vickram A.S., Anbarasu K., Thanigaivel S., Palanivelu J., Pugazhendhi A., Ponnusamy V.K. 2022. Role of nanomaterials in deactivating multiple drug resistance efflux pumps–A review. Environ. Res., 204, 111968. https://doi.org/10.1016/j.envres.2021.111968
- 7. Fosca M., Rau J.V., Uskoković V. 2022. Factors inf luencing the drug release from calcium phosphate cements. Bioactive Materials, 7, 341–363. https://doi.org/10.1016/j.bioactmat.2021.05.032
- 8. Fujihara S., Kadota Y., Kimura T. 2002. Role of organic additives in the sol-gel synthesis of porous CaF2 anti-reflective coatings. J. SolGel Sci. Technol., 24, 147–154. https://doi.org/10.1023/A:1015252010509
- 9. Gerward L., Olsen J.S., Steenstrup S., Malinowski M., Åsbrink S. and Waskowska A. 1992. A Xray diffraction investigations of CaF2 at high pressure. J. Appl. Crystallogr., 25, 578–581. https://doi.org/10.1107/S0021889892004096
- 10. Golubchikov D., Safronova T.V., Nemygina E., Shatalova T.B., Tikhomirova I.N., Roslyakov I.V., Khayrutdinova D., Platonov V., Boytsova O., Kaimonov M., Firsov D.A., and Lyssenko K.A. 2023. Powder synthesized from aqueous solution of calcium nitrate and mixed-anionic solution of orthophosphate and silicate anions for bioceramics production. Coatings, 13, 2, 374. https://doi.org/10.3390/coatings13020374
- 11. Grass R.N., Stark W.J. 2005. Flame synthesis of calcium-, strontium-, barium fluoride nanoparticles and sodium chloride, Chem Commun 13, 1767–1769 https://doi.org/10.1039/B419099H
- 12. Jang J.H., Oh S., Kim H.J., Kim D.S. 2023. Randomized clinical trial for comparing the efficacy of desensitizing toothpastes on the relief of dentin hypersensitivity. Sci. Rep., 13(1), 5271. https://doi.org/10.1038/s41598-023-31616-6
- 13. Kumar G.A., Chen C.W., Ballato J., Riman R.E. 2007. Optical characterization of infrared emitting rare-earth-doped fluoride nanocrystals and their transparent nanocomposites. Chem. Mater., 19, 1523–1528. https://doi.org/10.1021/cm051567n
- 14. Kumar A., Sharma M., Vaish R. 2022. Screen printed calcium fluoride nanoparticles embedded antibacterial cotton fabric. Mater. Chem. Phys., 288, 126449. https://doi.org/10.1016/j. matchemphys.2022.126449
- 15. Lebkiri I., Abbou B., Hsissou R., Safi Z., Sadiku M., Berisha A., El Amri A., Essaadaoui Y., Kadiri L., Lebkiri A., Rifi E.H. 2023. Investigation of the anionic polyacrylamide as a potential adsorbent of crystal violet dye from aqueous solution: Equilibrium, kinetic, thermodynamic, DFT, MC and MD approaches. J. Mol. Liq. 372, 121220. https://doi.org/10.1016/j.molliq.2023.121220
- 16. Longhinotti E., Pozza F., Furlan L., Sanchez M.N.M., Klug M., Laranjeira M.C.M., Fávere V.T. 1998. Adsorption of anionic dyes on the biopolymer chitin. J. Braz. Chem. Soc., 9, 435–440. https://doi.org/10.1590/S0103-50531998000500005
- 17. Matsuo S., Rölla G., Lagerlöf F. 1990. Effect of fluoride addition on ionized calcium in salivary sediment and in saliva containing various amounts of solid calcium f luoride. Eur. J. Oral. Sci., 98, 482–485. https://doi.org/10.1111/j.1600-0722.1990.tb01002.x
- 18. Mayerhöfer T.G., Pahlow S., Hübner U., Popp J. 2020. CaF2: An ideal substrate material for infrared spectroscopy. Anal. Chem., 92, 9024–9031. https://doi.org/10.1021/acs.analchem.0c01158
- 19. Mitwalli H., Al Sahafi R., Alhussein A., Oates H.W., Melo M.A.S., Xu H.H.K., Weir M.D. 2022. Novel rechargeable calcium fluoride dental nanocomposites. Dent. Mater., 38, 397–408. https://doi.org/10.1016/j.dental.2021.12.022
- 20. Mortier M., Bensalah A., Dantelle G., Patriarche G., Vivien D. 2007. Doped oxyfluoride glass-ceramics and fluoride ceramics: Synthesis and optical properties. Opt. Mater., 29, 1263–1270. https://doi.org/10.1016/j.optmat.2005.12.014
- 21. Motameni A., Alshemary A.Z., Evis Z.A. 2021. Review of synthesis methods, properties and use of monetite cements as filler for bone defects. Cera. Int., 47, 13245–13256. https://doi.org/10.1016/j.ceramint.2021.01.240
- 22. Nasrellah H., Yassine I., Hatimi B., Joudi M., Chemaa A., El Gaini L., Hatim Z., El Mhammedi M.A., Bakasse M. 2017. Nouvelle synthèse d’hydroxyapatite à partir de phosphogypse local. JMES, 8(9), 3168–3174.
- 23. Nasrellah H., Joudi M., Bensemali M., Yassine I., Hatimi B., Hafdi H., Mouldar J., El Mhammedi M.A. and Bakasse M. 2022. Novel synthesis and characterization of crystalline fluorapatite from Moroccan phosphogypsum waste. Matériaux & Techniques, 110(1), 102. https://doi.org/10.1051/mattech/2022007
- 24. Yassine I., Joudi M., Hafdi H., Hatimi B., Mouldar J., Bensemlali M., Nasrellah H., El Mahammedi M.A., Bakasse M. 2022. Synthesis of brushite from phosphogypsum industrial waste. Biointerface Research in Applied Chemistry, 12(5), 6580–658815. https://doi.org/10.33263/BRIAC125.65806588
- 25. Bensemali M., Joudi M., Nasrellah H., Yassine I., Aarfane A., Hatimi B., Hafdi H., Mouldar J. and Bakasse M. 2022. One-step synthesis and characterization of crystalline nano-calcite from phosphogypsum by precipitation method. The European Physical Journal Applied Physics, 97, 50. https://doi.org/10.1051/epjap/2022220041
- 26. Rølla G., Saxegard E. 1990. Critical evaluation of the composition and use of topical fluorides with emphasis on the role of calcium fluoride in caries inhibition. J. Dent. Res., 69, 780–785. https://doi.org/10.1177/00220345900690S150
- 27. El Aggadi S., El Hourch A. 2021. Removal of Reactive Blue 21 (RB21) Phthalocyanine Dye from Aqueous Solution by Adsorption Process. J. Environ. Stud., 30, 3425–3432. https://doi.org/10.15244/pjoes/127384
- 28. Shakoor H., Ibrahim M., Usman M., Adrees M., Mehmood M.A., Abbas F., Rasool N., Ibrahim M. 2016. Removal of reactive blue 21 from aqueous solution by sorption and solubilization in micellar media. J. Dispers Sci. Technol., 37, 144. https://doi.org/10.1080/01932691.2015.1035387
- 29. Sun X., Li Y. 2003. Nanocubes de CaF 2 monocristallins luminescents à taille variable. Chem. Commun., 14, 1768–1769. https://doi.org/10.1039/B303614F
- 30. Takaya Y., Inoue S., Kato T., Fuchida S., Tsujimoto S., Tokoro C. 2021. Purification of calcium fluoride (CaF2) sludge by selective carbonation of gypsum. J. Environ. Chem. Eng., 9, 104510. https://doi.org/10.1016/j.jece.2020.104510
- 31. Wang L., Wang B., Wang X., Liu W. 2007. Tribological investigation of CaF2 nanocrystals as grease additives. Tribol. Int., 40, 1179–1185. https://doi.org/10.1016/j.triboint.2006.12.003
- 32. Wang M., Ye H., Zheng X., Chen S., Xing H., Tao X., Dang Z., Lu G. 2023. Adsorption behaviors and mechanisms of simultaneous cadmium and fluoride removal on waste bovine bone from aqueous solution. J. Environ. Chem. Eng., 11(1), 109035. https://doi.org/10.1016/j.jece.2022.109035
- 33. Wu Y., Mayer J.T., Garfunkel E., Madey T.E. 1994. Xray photoelectron spectroscopy study of water adsorption on BaF2 (111) and CaF2 (111) surfaces. Langmuir, 10, 1482–1487 https://doi.org/10.1021/la00017a027
- 34. Yadav B.S., Dasgupta S. 2022. Effect of time, pH, and temperature on kinetics for adsorption of methyl orange dye into the modified nitrate intercalated MgAl LDH adsorbent. Inorg. Chem. Commun., 137, 109203. https://doi.org/10.1016/j.inoche.2022.109203
- 35. Young A.M., Ng P.Y.J., Gbureck U., Nazhat S.N.,. Barralet J.E., Hofmann M.P. 2008. Characterization of Chlorhexidine-Releasing, Fast-Setting, brushite Bone Cements. Acta. Biomater., 4, 1081–1088. https://doi.org/10.1016/j.actbio.2007.12.009
- 36. Zhou H., Yang L., Gbureck U., Bhaduri S.B., Sikder P. 2021. An important calcium phosphate compound–its synthesis, properties and applications in orthopedics. Acta Biomater, 127, 41–55. https://doi.org/10.1016/j.actbio.2021.03.050
- 37. Zhou L., Chen D., Luo W. 2007. Transparent glass ceramic containing Er3þ:CaF2 nano-crystals prepared by sol–gel method. Mater. Lett., 61, 39883990. https://doi.org/10.1016/j.matlet.2007.01.001
- 38. Zsigmondy R., Scherrer P. 1912. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie. Kolloidchemie Ein. Lehrbuch. 387–409. https://doi.org/10.1007/978-3-662-33915-2_7
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-590e2b6b-4b52-49ed-b8dd-1fe35f2bf99e