Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
he carbon footprint of crop production on the lands of agricultural enterprises in Ukraine under crops of wheat, maize, sunflower seeds, rapeseed, soy beans, sugar beets, potatoes and vegetables were determined using the UN IPCC methodology. An increase in the carbon footprint of crop production in Ukraine during 1990–2021 was revealed, which is associated with a high level of nitrogen input from mineral fertilizers to the soil and mineralization of humus. In Ukraine, during 1990‒2021, a high level of humus mineralization was observed on the agricultural lands under crops of wheat, maize, sunflower seed, rapeseed, soy bean, sugar beet, potatoes, and vegetables ‒ 8‒1998 kg/ha/year with emitted into the air from 0.2 to 63.0 Tg of CO2/year. The average CO2 emissions from agricultural land per 1 Mg of main production of studied crops of Ukraine during 1990‒2021 were 46‒1109 kg and N2O emissions were 33‒452 kg CO2-eq., respectively. Among the studied crops, the highest emissions of CO2 per unit of production due to the mineralization of humus are for the cultivation of sunflower seeds ‒ 1109 kg/Mg/year, maize ‒ 868 and rapeseed ‒ 531 kg/Mg/year, and the lowest emissions for the cultivation of vegetables ‒ 46 kg/Mg/year (2021). The highest N2O emissions from agricultural land per unit of production for the cultivation of rapeseed ‒ 452 kg CO2-eq./Mg/year, sunflower seeds ‒ 368 and soy beans ‒ 300 kg CO2-eq./Mg/year, and the lowest emissions for the cultivation of vegetables and sugar beet ‒ 33 kg CO2-eq./Mg/year (2021). According to the prognosis, this tendency will lead not only to an increase in GHG emissions, but also to soil depletion and a decrease in the country’s food security. By 2035, the average level of humus mineralization will be about 2200 kg/ha/year (R2 = 0.725), CO2 emissions per unit of the main production of crops will be about 800 kg of CO2 per 1 Mg of production per year (R2 = 0.657) and emissions of N2O from agricultural land per 1 Mg of main production of crops will be about 200 kg CO2-eq./year (R2 = 0.0591).
Czasopismo
Rocznik
Tom
Strony
39--59
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
- Department of Agro Resources and Information Technologies of Institute of Water Problems and Land Reclamation of NAAS, 37 Vasylkivska, Str., Kyiv, 03022, Ukraine
autor
- Department of Agrobioresources and Ecologically Safe Technologies of Institute of Agroecology and Environmental Management of NAAS, 12 Metrologichna, Str., Kyiv, 03143, Ukraine
autor
- Department of Agrobioresources and Ecologically Safe Technologies of Institute of Agroecology and Environmental Management of NAAS, 12 Metrologichna, Str., Kyiv, 03143, Ukraine
autor
- Department of Agrobioresources and Ecologically Safe Technologies of Institute of Agroecology and Environmental Management of NAAS, 12 Metrologichna, Str., Kyiv, 03143, Ukraine
autor
- Department of Economics of Nature Management in the Agro-Sphere of Institute of Agroecology and Environmental Management of NAAS, 12 Metrologichna, Str., Kyiv, 03143, Ukraine
Bibliografia
- 1. Balogh J.M. 2019. Agriculture-specific determinants of carbon footprint. Studies in Agricultural Economics, 121, 166‒170. https://doi.org/10.7896/j.1918
- 2. Cammarata M., Timpanaro G., Incardona, S., La Via G., Scuderi A. 2023. The quantification of carbon footprints in the agri-food sector and future trends for carbon sequestration: a systematic literature review. Sustainability, 15(21), 15611. https://doi.org/10.3390/su152115611
- 3. Holka M., Bieńkowski J. 2020. Carbon footprint and life-cycle costs of maize production in conventional and non-inversion tillage systems. Agronomy, 10(12), 1877. https://doi.org/10.3390/agronomy10121877
- 4. Popova O., Koval V., Vdovenko N., Sedikova I., Nesenenko P., Mikhno I. 2022. Environmental footprinting of agri-food products traded in the European market. Frontiers in Environmental Science, 10, 1036970. https://doi.org/10.3389/fenvs.2022.1036970
- 5. Theurl M.C., Haberl H., Erb K.-H., Lindenthal T. 2014. Contrasted greenhouse gas emissions from local versus long-range tomato production. Agronomy for Sustainable Development, 34, 593–602. https://doi.org/10.1007/s13593-013-0171-8
- 6. Balogh J.M., 2019. The Determinants of Carbon Footprint: Role of Agriculture. In: 63rd AARES Annual Conference ‒ Conference Paper. Corvinus University of Budapest Publishing. https://doi.org/10.22004/ag.econ.285052
- 7. Rosa L., Gabrielli P. 2023. Achieving net-zero emissions in agriculture: a review. Environmental Research Letters, 18(6), 063002. https://doi.org/10.1088/1748-9326/acd5e8
- 8. Avasthe R.K. Devi S.H., Bhupenchandra I., Kumar A., Chongtham S.K., Babu S., Raghavendra S., Das A., Gudade B.A., Bora S.S. 2023. Agro-tactics for reducing carbon footprint in agricultural production systems: A review. Indian Journal of Agronomy. 68(2), 115‒125. https://doi.org/10.59797/ija.v68i2.332
- 9. Al-Mansour F., Jejcic V. 2017. A model calculation of the carbon footprint of agricultural products: The case of Slovenia. Energy, 136, 7‒15. https://doi.org/10.1016/j.energy.2016.10.099
- 10. Cheng K., Yan M., Nayak D., Pan G.X.,Smith P., Zheng J.F., Zheng J.W. 2015. Carbon footprint of crop production in China: an analysis of National Statistics data. Journal of Agricultural Science, 153(3), 422–431. https://doi.org/10.1017/S0021859614000665
- 11. Hillier J., Hawes C., Squire G., Hilton A., Wale S., Smith P. 2009. The carbon footprints of food crop production. International Journal of Agricultural Sustainability, 7(9), 107–118. https://doi.org/10.3763/ijas.2009.0419
- 12. Li Z., Yang Y., So N., Lee J.-I. 2023. Carbon footprint of maize planting under intensive subsistence cultivation in South Korea. International Journal of Climate Change Strategies and Management, 15(3), 301‒321. https://doi.org/10.1108/IJCCSM-12-2021-0141
- 13. Manoj K.N., Shekara B.G., Sridhara S., Mudalagiriyappa, Chikkarugi N.M., Gopakkali P., Jha P.K., Vara Prasad P.V. 2022. Carbon footprint assessment and energy budgeting of different annual and perennial forage cropping systems: A study from the Semi-Arid Region of Karnataka, India. Agronomy, 12(8), 1783. https://doi.org/10.3390/agronomy12081783
- 14. Wróbel-Jędrzejewska M. Włodarczyk E. 2024. Comparison of carbon footprint analysis methods in grain processing‒studies using flour production as an example. Agriculture, 14(1), 14. https://doi.org/10.3390/agriculture14010014
- 15. Butrym O.V. 2018. Theoretical and methodological foundations of the formation of the internal carbon market in the context of balanced development of the agrosphere. In: O.I. Drebot (Eds). DIA (in Ukrainian). https://dea.edu.ua/img/source/Biblioteka/додано%202022/монографія-11.06.2018.pdf
- 16. Mathew I., Shimelis H., Mutema M., Minasny B., Chaplot V. 2020. Crops for increasing soil organic carbon stocks – A global meta analysis. Geoderma, 367, 114230. https://doi.org/10.1016/j.geoderma.2020.114230
- 17. Sah D., Devakumar A.S. 2018. The carbon footprint of agricultural crop cultivation in India. Carbon Management, 9(3) 213‒225. https://doi.org/10.1080/17583004.2018.1457908
- 18. Ozlu E., Arriaga F.J., Bilen S., Gozukara G., Babur E. 2022. Carbon footprint management by agricultural practices. Biology, 11(10), 1453. https://doi.org/10.3390/biology11101453
- 19. Liu C., Cutforth H., Chai1 Q. 2016. Yantai Gan. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agronomy for Sustainable Development. 36(4), 69. https://doi.org/10.1007/s13593-016-0404-8
- 20. Kumar R., Karmakar S., Minz A., Singh J., Kumar A., Kumar A. 2021. Assessment of greenhouse gases emission in maize-wheat cropping system under varied n fertilizer application using cool farm tool. Frontiers in Environmental Science, 9, 710108. https://doi.org/10.3389/fenvs.2021.710108
- 21. Hou L., Yang Y., Zhang X., Jiang C. 2021. Carbon footprint for wheat and maize production modulated by farm size: a study in the North China plain. International Journal of Climate Change Strategies and Management, 13(3), 302‒319. https://doi.org/10.1108/IJCCSM-10-2020-0110
- 22. Camargo G.G.T., Ryan M.R., and Richard T.L. 2013. Energy use and greenhouse gas emissions from crop production using the farm energy analysis Tool. BioScience, 63(4) 263–273. https://doi.org/10.1525/bio.2013.63.4.6
- 23. Pereira Bd.J., Cecílio Filho A.B., La Scala N. Jr., Figueiredo E.Bd. 2022. Greenhouse gas emissions and carbon footprint of collard greens, spinach and chicory production systems in Southeast of Brazil. Frontiers in Plant Science, 13, 1015307. https://doi.org/10.3389/fpls.2022.1015307
- 24. Zhang D., Shen J., Zhang F. Yu’e Li, Zhang W. 2017. Carbon footprint of grain production in China. Scientific Reports, 7, 4126. https://doi.org/10.1038/s41598-017-04182-x
- 25. Huo Y., Mi G., Zhu M., Chen S., Li J., Hao Z., Cai D., Zhang F. 2024. Carbon footprint of farming practices in farmland ecosystems on the North and Northeast China plains. Journal of Environmental Management, 354, 12037811. https://doi.org/10.1016/j.jenvman.2024.120378
- 26. Guidoboni M.V., Duparque A., Boissy J., Mouny J.-C., Auberger J., Van der Werf H.M.G. 2023. Conservation agriculture reduces climate change impact of a popcorn and wheat crop rotation. PLoS ONE, 18(5), 028558. https://doi.org/10.1371/journal.pone.0285586
- 27. Gan Y., Liang C., Chai Q., Lemke R.L., Campbell C.A., Zentner R.P. 2014. Improving farming practices reduces the carbon footprint of spring wheat production. Nature Communications. 5, 5012. https://doi.org/10.1038/ncomms6012
- 28. Singh S., Kiran B.R., Mohan S.V. 2024. Carbon farming: a circular framework to augment CO2 sinks and to combat climate change. Environmental Science: Advances, 3, 522‒542. https://doi.org/10.1039/d3va00296a
- 29. Rajput P., Naresh R.K., Navsare R.I., Sharath Chandra M., Shukla G., Rajput K.R. 2021. Impact of climate change on agriculture and farming tactics to reduce the carbon footprint of crop cultivation in sub-tropical ecosystem: A review. J Pharmacogn Phytochem, 10(2), 1269‒1279. https://www.phytojournal.com/archives/2021.v10.i2.13986/impact-of-climate-change-on-agriculture-and-farming-tactics-to-reduce-the-carbon-footprint-of-cropcultivation-in-sub-tropical-ecosystem-a-review
- 30. Northrup D.L., Basso B., Wang M.Q., Morgan C.L.S., Benfey P.N. 2021. Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. PNAS, 118(28), e2022666118. https://doi.org/10.1073/pnas.2022666118
- 31. Kazimierczuk K., Barrows S.E., Olarte M.V., Qafoku N.P. 2023. Decarbonization of agriculture: the greenhouse gas impacts and economics of existing and emerging climate-smart practices. ACS Engineering Au, 3(6), 426‒442. https://doi.org/10.1021/acsengineeringau.3c00031
- 32. Miao Z., Zhao Z., Long T., Chen X. 2023. Carbon footprint in agriculture sector: a literature review. Carbon Footprints, 2(3), 13. https://dx.doi.org/10.20517/cf.2023.29
- 33. Lynch J., Cain M., Frame D. Pierrehumbert R. 2021. Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Frontiers in Sustainable Food Systems, 4, 518039. https://dx.doi.org/10.3389/fsufs.2020.518039
- 34. Hawes J.K., Goldstein B.P., Newell J.P., Dorr E., Caputo S., Fox-Kämper R., Grard B., Ilieva R.T., Fargue-Lelièvre A., Poniży L., Schoen V., Specht K., Cohen N. 2024. Comparing the carbon footprints of urban and conventional agriculture. Nature Cities, 1, 164–173. https://doi.org/10.1038/s44284-023-00023-3
- 35. Zhang D., Zhang W. 2016. Low carbon agriculture and a review of calculation methods for crop production carbon footprint accounting. J. Resources Science, 38(7), 1395‒1405. https://doi.org/10.18402/resci.2016.07.19
- 36. Guidelines for National Greenhouse Gas Inventories. IPCC. 2006. https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
- 37. Ukraine’s Greenhouse gas inventory 1990‒2021. Ministry of Environmental Protection and Natural Resources of Ukraine. 2023. https://unfccc.int/documents/628276
- 38. Methodology and Handbook Eurostat. OECD Nutrient Budgets. 2013. https://ec.europa.eu/eurostat/cache/metadata/Annexes/aei_pr_gnb_esms_an_1.pdf
- 39. Guidance document for preventing and abating ammonia emissions from agricultural sources. ECE/EB.AIR/120. https://www.unece.org/fileadmin/DAM/env/documents/2012/EB/ECE_EB.AIR_120_ENG.pdf
- 40. Cheng K., Yan M., Pan G., Luo T., Yue Q. 2017. Methodology for Carbon Footprint Calculation in Crop and Livestock Production. https://www.researchgate.net/publication/321902896_Methodology_for_Carbon_Footprint_Calculation_in_Crop_and_Livestock_Production
- 41. Pinchuk V.О., Podoba Yu.V. 2023. Agroecological assessment of soil energy potential. Ukrainian Journal of Natural Sciences, 6, 80‒90 (in Ukrainian). https://doi.org/10.32782/naturaljournal.6.2023.9
- 42. Pinchuk V., Symochko L., Palapa N., Ustymenko O., Kichigina O., Demyanyuk O. 2021. Agroecological soil status in agroecosystems with monoculture. International Journal of Ecosystems and Ecology Science ‒ IJEES, 11(1), 1‒12. https://doi.org/10.31407/ijees11.101
- 43. Martyn A.G., Osypchuk S.O., Chumachenko O.M. 2018. Nature-Аgricultural zoning of Ukraine: a monograph. COMPRINT (in Ukrainian) https://nubip.edu.ua/sites/default/files/u18/monograph_natural_agricultural_zoning.pdf
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5909843e-145d-4c40-81fd-b245f17d72d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.