PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On analog comparators for CMOS digital pixel applications. A comparative study

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Voltage comparator is the only - apart from the light-to-voltage converter - analog component in the digital CMOS pixel. In this work, the influence of the analog comparator nonidealities on the performance of the digital pixel has been investigated. In particular, two versions of the digital pixel have been designed in 0.35 μm CMOS technology, each using a different type of analog comparator. The properties of both versions have been compared. The first pixel utilizes a differential comparator with the increased size and improved electrical performance. The second structure is based on a very simple non-differential comparator with a reduced size and degraded performance. Theoretical analysis of the comparator nonideality effect on the quality of the image obtained from the digital pixel matrix as well as simulation results are provided.
Rocznik
Strony
271--278
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
  • Faculty of Electronics Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Narutowicza St., 80-952 Gdańsk, Poland
Bibliografia
  • [1] A. E. Gamal and H. Eltoukhy, “CMOS image sensors”, IEEE Circuits Devices Mag. May/June, 6-20 (2005).
  • [2] A. Moini, Vision chips, Kluwer, Boston (2000).
  • [3] W. Jendernalik, G. Blakiewicz, J. Jakusz, S. Szczepański, R. Piotrowski, “An Analog Sub-Miliwatt CMOS Image Sensor With Pixel-Level Convolution Processing”, IEEE Trans. Circuits Syst. I, Reg. Papers, 60 (2), 279-289 (2013).
  • [4] W. Jendernalik, J. Jakusz, G. Blakiewicz, R. Piotrowski, S. Szczepański, “CMOS realisation of analogue processor for early vision processing”, Bull. Pol. Ac.: Tech. 59 (2), 141-147 (2011).
  • [5] S. Hanson, Z.Y. Foo, D. Blaauw, D. Sylvester, “A 0.5 V Sub-Microwatt CMOS Image Sensor With Pulse-Width Modulation Read-Out“, IEEE J. Solid-State Circ. 45 (4), 759-767 (2010).
  • [6] B. Pain, E. R. Fossum, “Approaches and analysis for on-focalplane analog-to-digital conversion”, Proc. SPIE vol. 2226, Infrared Readout Electronics II, 208-218 (1994)
  • [7] X. Wang, W. Wong, R. Hornsey, “A High Dynamic Range CMOS Image Sensor With Inpixel Light-to-Frequency Conversion”, IEEE Trans. Electron Devices, 53 (12), 2988-2992 (2006).
  • [8] A. Kitchen, A. Bermak, A. Bouzerdoum, “A Digital Pixel Sensor Array With Programmable Dynamic Range”, IEEE Trans. Electron Devices, 52 (12), 2591-2601 (2005).
  • [9] S. Kleinfelder, S. Lim, X. Liu, A. El Gamal, “A 10 000 Frames/s CMOS Digital Pixel Sensor”, IEEE J. Solid-State Circuits, 36 (12), 2049-2059 (2001).
  • [10] Z. Ignjatovic, D. Maricic, M. F. Bocko, “Low Power, High Dynamic Range CMOS Image Sensor Employing Pixel-Level Oversampling ΣΔ Analog-to-Digital Conversion”, IEEE Sensors J. 12 (4), 737-746 (2012).
  • [11] D. X. D. Yang, A. El Gamal, B. Fowler, H. Tian, “A 640 x 512 CMOS Image Sensor with Ultrawide Dynamic Range Floating- Point Pixel-Level ADC”, IEEE J. Solid-State Circuits 34 (12), 1821-1834 (1999).
  • [12] K. Ito, B. Tongprasit, T. Shibata, “A Computational Digital Pixel Sensor Featuring Block-Readout Architecture for On-Chip Image Processing”, IEEE Trans. Circuits Syst. I, Reg. Papers, 56 (1), 114-123 (2009).
  • [13] X. Guo, X. Qi, J. G. Harris, “A Time-to-First-Spike CMOS Image Sensor”, IEEE Sensors Journal 7 (8), 1165-1175 (2007).
  • [14] J. Jakusz, “Niskomocowy komparator z zatrzaskiem przeznaczony do cyfrowego przetwornika obrazu CMOS”, Przegląd Elektrotechniczny, 9, 57-60 (2015).
  • [15] K.R. Laker, W.M.C Sansen, “Design of analog integrated circuits and systems”, McGraw-Hill, New York (1994).
  • [16] M.J.M. Pelgrom, A.C.J Duinmaijer, A.P.G Welbers, “Matching Properties of MOS transistors”, IEEE J. Solid-State Circuits, 24 (5), 1433-1439 (1989).
  • [17] W. Jendernalik, G. Blakiewicz, J. Jakusz, S. Szczepański, “A nine-input 1.25 mW, 34 ns CMOS analog median filter for image processing in real time”, Analog Integrated Circuits and Signal Processing 76 (2), 233-243 (2013).
  • [18] Z. K. Kalayjian, A. G. Andreou, “Mismatch in photodiode and phototransistor arrays”, Proc. 2000 IEEE Int. Symp. on Circuits and Systems (ISCAS 2000), vol. 4, 121-124 (2000).
  • [19] Y. L. Wong, P. A. Abshire, “A 144 x 144 Current-Mode Image Sensor With Self-Adapting Mismatch Reduction”, IEEE Trans. Circuits Syst. I, Reg. Papers, 54 (8), 1687-1697 (2007).
  • [20] S. Decker, et al., “A 256 x 256 CMOS Imaging Array with Wide Dynamic Range Pixels and Column-Parallel Digital Output”, IEEE J. Solid-State Circuits, 33 (12), 2081-2091 (1998).
  • [21] W. Jendernalik, J. Jakusz, G. Blakiewicz, S. Szczepański, R. Piotrowski, “Characteristics of an Image Sensor with Early-Vision Processing Fabricated in Standard 0.35 μm CMOS Technology”, Metrology and Measurement Systems 19 (2), 191-202 (2012).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5906616c-aa70-4944-bc8f-34755cd2cd83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.