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Abstract

The purpose of this study was to generate more concise rule extraction from the Recursive-
Rule Extraction (Re-RX) algorithm by replacing the C4.5 program currently employed in
Re-RX with the J48graft algorithm. Experiments were subsequently conducted to deter-
mine rules for six different two-class mixed datasets having discrete and continuous at-
tributes and to compare the resulting accuracy, comprehensibility and conciseness. When
working with the CARD1, CARD2, CARD3, German, Bene1 and Bene2 datasets, Re-RX
with J48graft provided more concise rules than the original Re-RX algorithm. The use
of Re-RX with J48graft resulted in 43.2%, 37% and 21% reductions in rules in the case
of the German, Bene1 and Bene2 datasets compared to Re-RX. Furthermore, the Re-RX
with J48graft showed 8.87% better accuracy than the Re-RX algorithm for the German
dataset. These results confirm that the application of Re-RX in conjunction with J48graft
has the capacity to facilitate migration from existing data systems toward new concise
analytic systems and Big Data.
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1 Introduction

Recently, both Big Data and business analytics
have increased in importance, and so companies us-
ing established data warehouse architectures have
to integrate these methods with existing systems
based on traditional business intelligence. There
has been little discussion about the means of accom-

plishing this migration, which requires an informa-
tion architecture that ideally includes all the ad-
vantages of existing data warehousing approaches
while facilitating the integration of new technolo-
gies.

Automated credit score calculations are evi-
dently superior to hand-calculated risk assessments.
Advantages include increased objectivity and relia-
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bility, as well as reduced costs and labor during the
assessment of new credit applications [1]. Nonethe-
less, the credit evaluation of a human with sufficient
expertise can still be superior to an automated as-
sessment. For this reason, and because the finance
industry relies on the appropriate prediction of lend-
ing risks, research aimed at improving the validity
of computerized credit assessments is ongoing [2].

As noted, automated lending risk evaluations
are currently imperfect and, in fact, the failure of
credit scoring algorithms to identify loan recipients
who will eventually default on their loans results in
sizable losses on an ongoing basis [3].

Data show that the loss of vast amounts of capi-
tal could be prevented by even small increases in the
performance of computerized credit assessments.
As a result, numerous methods have been consid-
ered for automated loan decision making processes,
including linear discriminant analysis (LDA), logis-
tic regression (LR) and multiple discriminant anal-
ysis (MDA).

A number of alternative approaches to credit
score computation have also been developed over
the last several decades, including decision trees
(DTs) [4], support vector machines (SVMs) [5],
neural networks (NNs) [2, 6], classifier [7] and var-
ious genetic algorithms (GA) [8]. However, these
methods have not been widely adopted since they
are more complex and require greater resources
while offering less interpretability, although they
have been shown to produce significantly better re-
sults compared to those obtained from LR, LDA
and MDA.

One promising approach to improved credit
scoring is rule extraction, whereby a set of simple
and comprehensible rules are found to explain the
behavior of NNs [6] and SVMs [5, 9], and three
methods for the extraction of rules by an NN for
the purpose of evaluating credit risks were assessed
by Baesens et al. [6]. In addition, several meth-
ods have been proposed for the extraction of in-
formation from back-propagation neural networks
(BPNNs) [10, 11, 12].

The practical application of classification pro-
cesses typically uses both discrete and continuous
data inputs, or so-called mixed data [13], and so
rule extraction by Neurorule [14] and similar algo-
rithms requires that the continuous attributes first be

discretized. During discretization, the input space
is divided into hyper-rectangular regions, each of
which corresponds to data samples belonging to a
specific class, and is associated with an extracted
rule condition [13].

However, some NN rule extraction algorithms,
such as GLARE [15] and OSRE [16], do not need
to discretize the attributes of continuous input data
[10,11], and instead use linear combinations of the
appropriate input attributes, incorporating both con-
tinuous and discrete attributes, to generate the ex-
tracted rules.

Pronounced improvements in the generalization
capabilities of artificial neural networks (ANNs)-
based learning systems have been demonstrated via
the application of ANN ensembles, based on com-
bining the predictions of numerous trained ANNs
in a voting process [17].

More recently, improved generalization has
been exhibited by BPNN ensembles [18], although
an intuitive understanding of the decision-making
processes of such ensembles is impossible due to
their lack of transparency, significantly restricting
the applications of this method [19].

Real-world classification problems usually in-
volve both discrete and continuous input attributes,
all of which must be discretized. However, this pro-
cess may reduce the accuracy of the networks, and
hence the accuracy of the extracted rules, because
discretization divides the input space into hyper-
rectangular regions.

Setiono et al. [13] has proposed a Recursive-
Rule Extraction (Re-RX) algorithm for rule extrac-
tion from an NN trained to solve classification prob-
lems having mixed discrete and continuous input
data attributes. This algorithm is similar to other
existing rule extraction algorithms in some ways.
Setiono et al. [20] has also proposed a preprocess-
ing method for the Re-RX algorithm and a credit
card screening application [21]. Utilizing Re-RX,
Hayashi et al. [22] presented a very modern ap-
proach to the analysis of consumer heterogeneity in
the context of eating-out behavior in Taiwan.

Bologna [23] has proposed the Discretized
Interpretable Multi-Layer Perceptron (DIMLP)
model with rules generated from NN ensembles.
This is a special NN model that generates symbolic
rules to clarify the knowledge embedded within
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connections and activation neurons. Zhou et al.
[24] proposed the Rule Extraction from Network
Ensemble (REFNE) approach to extract symbolic
rules from trained NN ensembles performing clas-
sification tasks.

The novel algorithm Re-RX noted above pro-
vides a hierarchical, recursive consideration of dis-
crete variables prior to the analysis of continuous
data. This algorithm is able to generate classifica-
tion rules from NNs that have been trained on the
basis of discrete and continuous attributes.

Due to its recursive nature, the Re-RX algo-
rithm tends to generate more rules than other rule
extraction algorithms, sometimes generating too
many rules for practical applications when working
with moderately-sized datasets such as Bene1 and
Bene2 [6].

In both multi-objective optimization and eco-
nomics, so-called Pareto optimality is always an im-
portant issue. In the case of credit scoring, there is a
trade-off between high accuracy and comprehensi-
bility; extracting rules from credit scoring datasets
with an increased degree of accuracy generally re-
sults in reduced comprehensibility. Conversely, one
can also obtain extracted rules with reduced accu-
racy and more comprehensibility.

Considering the above Pareto optimality, we
wished to increase the conciseness of the extracted
rules resulting from the Re-RX algorithm, thus mit-
igating the tendency of this method to generate
more rules than other rule extraction algorithms. In
this paper, we newly propose the combination of the
Re-RX algorithm with the J48graft program [25]
as a means of further enhancing the conciseness of
the rules extracted by Re-RX. J48graft is an unique
variant of C4.5 [4], and is described in detail in Sec-
tion 3.2.

Herein, we compare the accuracy, comprehen-
sibilty and concisness obtained from the Re-RX al-
gorithm [13] with that resulting from the proposed
combination of Re-RX with J48graft. We report ex-
periments conducted to generate rules for six types
of two-class mixed datasets containing discrete and
continuous attributes.

When working with the CARD1, CARD2,
CARD3, German, Bene1 and Bene2 datasets, Re-
RX with J48graft was found to provide more con-
cise rules than were generated by the Re-RX algo-

rithm. In the case of the German, Bene1 and Bene2
datasets, Re-RX with J48graft allowed 43.2%, 37%
and 21% reduction in the number of rules, while a
8.87% accuracy increase was seen when using the
German dataset.

2 Recursive-Rule Extraction Algo-
rithm: Re-RX Algorithm

Algorithm Re-RX (Si, Di, Ci).

Input: A set of data samples S having discrete
attributes D and continuous attributes C.

Output: A set of classification rules.

1. Train and prune [26] a neural network by us-
ing the dataset S and all of its D and C attributes.

2. Let D’ and C’ be the sets of discrete and
continuous attributes, respectively, still present
in the network, and let S’ be the set of data
samples correctly classified by the pruned
network.

3. If D’ = f, then generate a hyperplane to split
the samples in S’ according to the values of the
continuous attributes C’, and stop. Otherwise,
by using only the discrete attributes D’, generate
the set of classification rules R for dataset S’.

4. For each rule Ri generated:
If support(Ri)>δ1 and error(Ri)>δ2, then

– Let Si be the set of data samples that sat-
isfy the condition of rule Ri and let Di be the
set of discrete attributes that do not appear in
rule condition Ri.

– If Di = f, then generate a hyperplane to split
the samples in Si according to the values of
their continuous attributes Ci, and stop.

– Otherwise, call Re-RX (Si, Di, Ci).

The Re-RX algorithm [13] is designed to generate
classification rules from datasets that have both dis-
crete and continuous attributes. The algorithm is
recursive in nature and generates hierarchical rules.
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The rule conditions for discrete attributes are dis-
jointed from those for continuous attributes. The
continuous attributes only appear in the conditions
of the rules lowest in the hierarchy. The outline of
the algorithm is as follows.

The support of a rule is the percentage of sam-
ples that are covered by that rule. The support
and the corresponding error rate of each rule are
checked in step 4. If the error exceeds threshold δ1
and the support meets the maximum threshold δ2,
then the subspace of this rule is further subdivided
by either recursively calling Re-RX when discrete
attributes are still not present in the conditions of
the rule or by generating a separating axis hyper-
plane involving only the continuous attributes of the
data.

3 Recursive-Rule Extraction Algo-
rithm with J48graft

Herein, we propose combining the Re-RX algo-
rithm with J48graft to enhance the conciseness of
classification rules. The conventional Re-RX algo-
rithm uses C4.5 as a decision tree. In the present
work, however, we replaced C4.5 with J48graft [25]
as the new decision tree. Sections 3.1 and 3.2, be-
low, describe this new algorithm.

3.1 J4.8

J4.8 [27] is a Java-implemented version of C4.5
[4], representing an advanced version of Quinlan’s
ID3 algorithm [28]. C4.5 is generally referred to as
a statistical classifier since the decision trees gen-
erated by this algorithm are used for classification.
C4.5 functions in a manner very similar to ID3 ex-
cept that it uses the gain ratio to determine the best
target attribute. The C4.5 algorithm also has some
advancements relative to ID3, such as the ability to
handle numerical attributes by creating a threshold
and splitting the data into two sets: data for which
the attribute value is above the set threshold and
data whose attribute values are less than or equal
to this threshold. In addition, this algorithm has the
ability to handle attributes with differing costs. Fi-
nally, because C4.5 is able to prune the decision tree
after creation of the tree, it can potentially decrease
the size of the tree and hence reduce the demand for
both memory and computation time.

3.2 J48graft

Although simple methods of selecting appropriate
trees have typically been considered advisable, tree
grafting differs in that this process works on the as-
sumption that similar objects are very likely in the
same class. Tree grafting therefore attempts to gen-
erate superior classification models at the expense
of producing highly complex trees.

Decision trees can undergo grafting as a post-
process meant largely to reclassify parts of the in-
stance space in which there are no training data or
there are only misclassified data, as a means of re-
ducing prediction errors. As such, this method iden-
tifies leaf reagions that should be pruned and sub-
squently generates new leaves with novel classifica-
tions via a branching out process, necessarily pro-
ducing a more complex tree. This process only al-
lows branching that avoids the introduction of clas-
sification errors into data that have previously been
correctly classified. As a result, rather than intoduc-
ing errors, the grafting technique eliminates them.

To provide a more efficient means of evaluat-
ing the supporting evidence, the C4.5A algorthim
was originally introduced by Webb [29]. This al-
gorithm is associated with grafting from the All-
Test-But-One-Partition (ATBOP) regions of a leaf,
defined as those regions that result from removing
all surrounding decision surfaces. Since only the
training dataset from this ATBOP region is taken
into account for each leaf, the ATBOP approach re-
duces computational requirements. Since the intro-
duction of C4.5A, the open source data mining soft-
ware Weka has incorporated the algorithm, terming
it J48graft [25].

Pruning can be thought of as the reverse process
to grafting because it lowers decsion tree complex-
ity while maintaining a suitable degree of predic-
tion accuracy. In contrast, grafting increases the
complexity of the tree. Despite this, Webb [30]
determined that the parallel use of these two tech-
niques generates good results. This is perhaps be-
cause pruning considers solely instances internal to
analyzed leaves (local information), while grafting
takes into account information external to the leaves
(global information). Thus these approaches are
complementary and their combined use generally
produces a lower prediction error than their sepa-
rate applications [30].
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3.3 Combining Re-RX with J48graft

The pruning approaches employed in J4.8 and
the grafting process that occurs in J48graft [25] both
complement and contrast with one another. We be-
lieve that the performance of the Re-RX algorithm
[13] is greatly affected by the decision tree, and
so our goal was to use the grafting techniques in
J48graft and Re-RX to improve the accuracy and
conciseness of extracted rules. To this end, we re-
placed J4.8 in the Re-RX algorithm with J48graft.

When combined with Re-RX, the J48graft al-
gorithm is frequently employed to form decision
trees in a recursive manner while training Multi-
Layer Perceptrons (MLPs) using Back-Propagation
(BP). This allows for pruning [26] and thus gener-
ates more efficient MLPs for rule extraction.

4 Datasets and Experimental Pro-
cedure

4.1 CARD Credit Datasets

The UCI Repository [31] provides a dataset of
credit card approvals comprising 690 data samples,
each of which has six continuous and nine discrete
(that is, categorical or nominal) attributes. The dis-
crete attributes are designated using a binary system
and so, in total, the dataset consists of 51 input at-
tributes with two outputs.

Prechelt [32] randomly redistributed this
dataset to generate three permutations to serve as
benchmarks: CARD1, CARD2 and CARD3, each
containing 518 and 172 training and test samples,
respectively.

4.2 German Credit Dataset

The UCI Repository’s German credit dataset
[31] holds 1000 samples, each having 20 attributes,
including a class attribute that designates individ-
uals with good (about 700 samples) or bad (300
samples) credit. In the present study, this dataset
was apportioned in a random manner such that 70%
of the samples were allotted to training and the re-
maining 30% were used for test purposes.

4.3 Bene1 and Bene2 Credit Datasets

This study also employed the Bene1 and Bene2
datasets [6] generated by Benelux-based major fi-
nancial institutions, which summarize consumer
credit application data. In keeping with standard
banking practice, customers are flagged as a poor
risk in these datasets if they have been in payment
arrears longer than 90 days at any point. These vo-
luminous datasets were divided such that approxi-
mately two thirds of the samples were applied for
training and one third for test purposes.

4.4 Experimental Setup

The training sets within each database were
used to train NNs and to extract rules. During this
process, one input unit was created in the NN for
each continuous attribute contained in the dataset,
while either thermometer or dummy variable en-
coding converted discrete attributes into a binary in-
put string [33]. The datasets used to assess two dif-
ferent rule extraction algorithms are summarized in
Table 1. To deal with the class imbalanced datasets,
the area under the receiver operating characteristic
(ROC) curve (AUC) was used as an appropriate per-
formance evaluator not including class distribution
or misclassification costs [1].

Table 1. Characteristics of Datasets Used in
Credit-risk Evaluation

Dataset
Size

Input
To-
tal

Input
Contin-
uous

Input
Dis-
crete

CARD1 690 51 6 45
CARD2 690 51 6 45
CARD3 690 51 6 45
German 1000 20 7 13
Bene1 3123 27 13 14
Bene2 7190 28 18 10

5 Experimental Results

We trained six types of two-class mixed datasets
[6, 31, 32] using both the Re-RX and Re-RX with
J48graft algorithms. The resulting accuracies and
number of extracted rules were determined for each
test dataset, as well as the average number of an-
tecedents in each extracted rule. Tables 2–4 sum-
marize the results obtained from the Re-RX algo-
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Table 2. Performance of training and test datasets for CARD1 and CARD2 by the Re-RX algorithm
(averaged over ten runs)

CARD1
Training
(%)

Test
# Rules Ave. #

Ante.
CARD2
Training
(%)

Test
# Rules Ave. # Ante.

Re-
RX

- 89.53 9 3.44 - 86.63 9 1.56

Table 3. Performance of training and test datasets for CARD3 and German by the Re-RX algorithm
(averaged over ten runs)

CARD3
Training
(%)

Test
# Rules Ave. #

Ante.
German
Training
(%)

Test
# Rules Ave. #.

Ante.

Re-
RX

- 88.95 6 2.33 - 71.66±0.88 24.9 9.29

Table 4. Performance of training and test datasets for Bene1 and Bene2 by the Re-RX algorithm (averaged
over ten runs)

Bene1
Training
(%)

Test
# Rules Ave. #

Ante.
Bene2
Training
(%)

Test
# Rules Ave. #

Ante.

Re-
RX
only

- 71.40±0.51 49.9 9.25 - 72.23±0.42 50.20 7.57

Table 5. Performance of training and test datasets for CARD1 and CARD2 by the Re-RX with J48graft
(averaged over ten runs)

CARD1
Training
(%)

Test
#
Rules

Ave.
#
Ante.

CARD2
Training
(%)

Tes t
# Rules Ave. #

Ante.

Re-RX
with
J48graft

89.09±0.49 88.98±1.11 6.3 3.15 87.72±0.67 87.58±0.18 7.2 3.68

Table 6. Performance of training and test datasets for CARD3 and German by the Re-RX with J48graft
(averaged over ten runs)

CARD3
Training
(%)

Test
#
Rules

Ave.
#
Ante.

German
Training
(%)

Test
# Rules Ave. #

Ante.

Re-RX
with
J48graft

89.48±3.32 89.39±1.88 5.7 2.73 81.32±1.02 80.53±0.88 14.4 5.36



41Y. Hayashi, Y. Tanaka, T. Takagi, T. Saito, H. Iiduka, H. Kikuchi, G. Bologna, S. Mitra
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Re-
RX
only

- 71.40±0.51 49.9 9.25 - 72.23±0.42 50.20 7.57

Table 5. Performance of training and test datasets for CARD1 and CARD2 by the Re-RX with J48graft
(averaged over ten runs)

CARD1
Training
(%)

Test
#
Rules

Ave.
#
Ante.

CARD2
Training
(%)

Tes t
# Rules Ave. #

Ante.

Re-RX
with
J48graft

89.09±0.49 88.98±1.11 6.3 3.15 87.72±0.67 87.58±0.18 7.2 3.68

Table 6. Performance of training and test datasets for CARD3 and German by the Re-RX with J48graft
(averaged over ten runs)

CARD3
Training
(%)

Test
#
Rules

Ave.
#
Ante.

German
Training
(%)

Test
# Rules Ave. #

Ante.

Re-RX
with
J48graft

89.48±3.32 89.39±1.88 5.7 2.73 81.32±1.02 80.53±0.88 14.4 5.36

RECURSIVE-RULE EXTRACTION ALGORITHM WITH. . .

Table 7. Performance of training and test datasets for Bene1 and Bene2 by the Re-RX with J48graft
(averaged over ten runs)

Bene1
Training
(%)

Test
#
Rules

Ave.
#
Ante.

Bene2
Training
(%)

Test
# Rules Ave. #

Ante.

Re-RX
with
J48graft

74.42±0.34 74.15±0.38 31.5 9.17 75.73±3.00 75.52±2.62 39.9 7.15

rithm, while Tables 5–7 show results from Re-RX
with J48graft. In Tables 2–7, the bold numbers in-
dicate the highest test accuracies or the fewest num-
ber of rules of all the rules extracted.

6 Discussion of Experimental Re-
sults

In the case of each database, the Re-RX with
J48graft generated a more concise set of extracted
rules than the Re-RX algorithm.

As confirmed by the number of rules and the
average number of antecedents of extracted rules
in Tables 6 and 7, the use of J48graft is evi-
dently an effective means of obtaining improved
conciseness and comprehensibility when working
with larger and/or complex datasets such as German
and Bene2.

For German, Bene1 and Bene2 datasets, we in-
dependently implemented the Re-RX algorithm in
Java from the authors [13] so that we obtained the
results for test datasets by averaged over ten runs.

The Re-RX algorithm exhibits 71.66±0.88 ac-
curacy when working with the German dataset and
extracts 24.9 rules.

The Re-RX algorithm also showed 71.40±0.51
accuracy with Bene1 dataset and extracts 49.9 rules.

In the same manner, the Re-RX algorithm
showed 72.23±0.42 accuracy with Bene2 dataset
and extracts 50.2 rules.

In the case of German dataset, Re-RX with
J48graft gave the accuracy of 80.53±0.88 and ex-
tracted 14.4 rules. Clearly, the Re-RX with J48graft
is considerably more accurate and concise com-
pared to that of the Re-RX algorithm.

In the case of Bene1 and Bene2 datasets, Re-
RX with J48graft gave slightly better accuracy and
considerably more concise rules compared to that
of the Re-RX algorithm.

7 Conclusion

This paper proposes that the Recursive-
Rule Extraction algorithm can be combined with
J48graft. Experiments were conducted to obtain
classification rules for six two-class mixed datasets
to establish the accuracy, comprehensibility and
conciseness of this new approach relative to the Re-
RX algorithm.

Working with the German, Bene1 and Bene2
datasets, the proposed Re-RX with J48graft com-
bination clearly showed a more effective set of ex-
tracted rules.

Needless to say, if we can accomplish Pareto
optimization, we will be able to obtain the best pos-
sible rule extraction process. Ideally, we hope to ex-
tend the Pareto optimization curve to obtain a wider
viable region that provides improvements in both
accuracy and comprehensibility.

In future work, we will explore additional de-
cision trees that are more compatible with the Re-
RX algorithm and that generate results closer to the
Pareto optimal accuracies for various datasets.
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