Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work focuses on the study on the novel hybrid method of simultaneous spraying from two different materials (Al2O3 and TiO2) by means of suspension plasma spraying (SPS) using submicron powder and water suspension. The goal was to attempt the deposition of intermixed alumina-titania coatings, namely: Al2O3 + 3 wt.% TiO2, Al2O3 + 13 wt.% TiO2, and Al2O3 + 40 wt.% TiO2. Such compositions are already used but in the form of conventionally plasma sprayed coatings, with micrometer-sized powder. Meanwhile, the injection of feedstocks with submicron-sized particles has not been established yet. In particular, this paper uses two routes of feedstock injection, (i) with the use of an intermixed suspension and (ii) a double injection of separate suspensions. The attention was paid to the characterization of the feedstock materials, description of deposition parameters as well as the morphology, microstructure, and phase composition of the obtained coatings. Among all coatings, Al2O3 + 40 wt.% TiO2 sprayed with double injection contained the most homogeneously distributed and melted splats. The results from this work demonstrate the possibility of coating deposition both by intermixed and double injection concepts but also the need for the further application-relevant optimization, related to the presence of intercolumnar gaps in the microstructure of the coatings.
Wydawca
Czasopismo
Rocznik
Tom
Strony
599--614
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Wroclaw University of Science and Technology, Wrocław, Poland
autor
- Institute of Plasma Physics of the Czech Academy of Science, Prague, Czech Republic
autor
autor
autor
- Institute of Plasma Physics of the Czech Academy of Science, Prague, Czech Republic
Bibliografia
- [1] Potthoff A, Kratzsch R, Barbosa M, Kulissa N, Kunze O, Toma F-L. Development and application of binary suspensions in the ternary system Cr2O3/TiO2/Al2O3 for S-HVOF spraying. J Therm Spray Tech. 2018 Apr 1;27(4):710–7.
- [2] Michalak M, Łatka L, Sokołowski P, Toma F-L, Myalska H, Denoirjean A, et al. Microstructural, mechanical and tribological properties of finely grained Al2O3 coatings obtained by SPS and S-HVOF methods. Surface and Coatings Technology. 2020 Dec 25;404:126463.
- [3] Fauchais P, Joulia A, Goutier S, Chazelas C, Vardelle M, Vardelle A, et al. Suspension and solution plasma spraying. J Phys D: Appl Phys. 2013;46(22):224015.
- [4] Tesar T, Musalek R, Lukac F, Medricky J, Cizek J, Rimal V, et al. Increasing α-phase content of alumina-chromia coatings deposited by suspension plasma spraying using hybrid and intermixed concepts. Surface and Coatings Technology. 2019 Aug 15;371:298–311.
- [5] Steeper TJ, Varacalle DJ, Wilson GC, Riggs WL, Rotolico AJ, Nerz J. A design of experiment study of plasma-sprayed alumina-titania coatings. JTST. 1993 Sep 1;2(3):251–6.
- [6] Alebrahim E, Tarasi F, Rahaman MdS, Dolatabadi A, Moreau C. Fabrication of titanium dioxide filtration membrane using suspension plasma spray process. Surface and Coatings Technology. 2019 Nov 25;378:124927.
- [7] Musalek R, Medricky J, Tesar T, Kotlan J, Pala Z, Lukac F, et al. Suspensions plasma spraying of ceramics with hybrid water-stabilized plasma technology. J Therm Spray Tech. 2017 Jan 1;26(1):37–46.
- [8] Łatka L, Michalak M, Szala M, Walczak M, Sokołowski P, Ambroziak A. Influence of 13 wt% TiO2 content in alumina-titania powders on microstructure, sliding wear and cavitation erosion resistance of APS sprayed coatings. Surface and Coatings Technology. 2021 Mar 25;410:126979.
- [9] Klyatskina E, Espinosa-Fernández L, Darut G, Segovia F, Salvador MD, Montavon G, et al. Sliding wear behavior of Al2O3–TiO2 coatings fabricated by the Suspension Plasma Spraying Technique. Tribol Lett. 2015 Jul 1;59(1):8.
- [10] Łatka L, Szala M, Macek W, Branco R. Mechanical properties and sliding wear resistance of Suspension Plasma Sprayed YSZ coatings. Adv Sci Technol Res J. 2020 Dec 1;14(4):307–14.
- [11] Mahade S, Mulone A, Björklund S, Klement U, Joshi S. Incorporation of graphene nano platelets in suspension plasma sprayed alumina coatings for improved tribological properties. Applied Surface Science. 2021 Dec 30;570:151227.
- [12] Mukherjee B, Asiq Rahman OS, Islam A, Sribalaji M, Keshri AK. Plasma sprayed carbon nanotube and graphene nanoplatelets reinforced alumina hybrid composite coating with outstanding toughness. Journal of Alloys and Compounds. 2017 Dec 15;727:658–70.
- [13] Rico A, Rodriguez J, Otero E, Zeng P, Rainforth WM. Wear behaviour of nanostructured alumina–titania coatings deposited by atmospheric plasma spray. Wear. 2009 Jun 15;267(5):1191–7.
- [14] Vicent M, Bannier E, Moreno R, Salvador MD, Sánchez E. Atmospheric plasma spraying coatings from alumina–titania feedstock comprising bimodal particle size distributions. Journal of the European Ceramic Society. 2013 Dec 1;33(15):3313–24.
- [15] Vicent M, Bannier E, Carpio P, Rayón E, Benavente R, Salvador MD, et al. Effect of the initial particle size distribution on the properties of suspension plasma sprayed Al2O3–TiO2 coatings. Surface and Coatings Technology. 2015 Apr 25;268:209–15.
- [16] Darut G, Klyatskina E, Valette S, Carles P, Denoirjean A, Montavon G, et al. Architecture and phases composition of suspension plasma sprayed alumina–titania submicrometer-sized coatings. Materials Letters. 2012 Jan 15;67(1):241–4.
- [17] Michalak M, Sokołowski P, Szala M, Walczak M, Łatka L, Toma F-L, et al. Wear behavior analysis of Al2O3 coatings manufactured by APS and HVOF spraying processes using powder and suspension feedstocks. Coatings. 2021 Aug;11(8):879.
- [18] Michalak M, Toma F-L, Latka L, Sokolowski P, Barbosa M, Ambroziak A. A study on the microstructural characterization and phase compositions of thermally sprayed Al2O3-TiO2 coatings obtained from powders and water-based suspensions. Materials. 2020 Jan;13(11):2638.
- [19] Berger L-M, Sempf K, Sohn YJ, Vaßen R. Influence of feedstock powder modification by heat treatments on the properties of APS-sprayed Al2O3-40% TiO2 coatings. J Therm Spray Tech. 2018 Apr 1;27(4):654–66.
- [20] Sarikaya O, Anik S, Aslanlar S, Cem Okumus S, Celik E. Al–Si/B4C composite coatings on Al–Si substrate by plasma spray technique. Materials & Design. 2007 Jan 1;28(9):2443–9.
- [21] Li N, Li G, Wang H, Kang J, Dong T, Wang H. Influence of TiO2 content on the mechanical and tribological properties of Cr2O3-based coating. Materials & Design. 2015 Dec 25;88:906–14.
- [22] Ganvir A, Björklund S, Yao Y, V. S. S. Vadali S, Klement U, Joshi S. A facile approach to deposit graphenaceous composite coatings by Suspension Plasma Spraying. Coatings. 2019 Mar;9(3):171.
- [23] Tian W, Wang Y, Yang Y. Three body abrasive wear characteristics of plasma sprayed conventional and nanostructured Al2O3-13%TiO2 coatings. Tribology International. 2010 May 1;43(5):876–81.
- [24] Winnicki M. Advanced Functional metal-ceramic and ceramic coatings deposited by low-pressure cold spraying: a review. Coatings. 2021 Sep;11(9):1044.
- [25] Ortiz CH, Hernandez-Rengifo E, Guerrero A, Aperador W, Caicedo JC. Mechanical and tribological properties evolution of [Si3N4/Al2O3]n multilayer coatings. Tribol Ind. 2021 Mar 15;43(1):23–39.
- [26] Björklund S, Goel S, Joshi S. Function-dependent coating architectures by hybrid powder-suspension plasma spraying: Injector design, processing and concept validation. Materials & Design. 2018 Mar 15;142:56–65.
- [27] Murray JW, Leva A, Joshi S, Hussain T. Microstructure and wear behaviour of powder and suspension hybrid Al2O3–YSZ coatings. Ceramics International. 2018 May 1;44(7):8498–504.
- [28] Kiilakoski J, Puranen J, Heinonen E, Koivuluoto H, Vuoristo P. Characterization of powder-precursor HVOF-sprayed Al2O3-YSZ/ZrO2 coatings. J Therm Spray Tech. 2019 Jan 1;28(1):98–107.
- [29] Sadeghi E, Markocsan N, Joshi S. Advances in corrosion-resistant thermal spray coatings for renewable energy power plants. Part I: effect of composition and microstructure. J Therm Spray Tech. 2019 Dec 1;28(8):1749–88.
- [30] Darut G, Klyatskina E, Valette S, Carles P, Denoirjean A, Montavon G, et al. Architecture and phases composition of suspension plasma sprayed alumina–titania submicrometer-sized coatings. Materials Letters. 2012 Jan 15;67(1):241–4.
- [31] Sánchez E, Moreno A, Vicent M, Salvador MD, Bonache V, Klyatskina E, et al. Preparation and spray drying of Al2O3–TiO2 nanoparticle suspensions to obtain nanostructured coatings by APS. Surface and Coatings Technology. 2010 Nov 15;205(4):987–92.
- [32] Toma F-L, Potthoff A, Berger L-M, Leyens C. Demands, potentials, and economic aspects of thermal spraying with suspensions: a critical review. J Therm Spray Tech. 2015 Oct 1;24(7):1143–52.
- [33] Tesar T, Musalek R, Medricky J, Kotlan J, Lukac F, Pala Z, et al. Development of suspension plasma sprayed alumina coatings with high enthalpy plasma torch. Surface and Coatings Technology. 2017 Sep 25;325:277–88.
- [34] Huan Y, Wu K, Li C, Liao H, Debliquy M, Zhang C. Micro-nano structured functional coatings deposited by liquid plasma spraying. J Adv Ceram. 2020 Oct 1;9(5):517–34.
- [35] Goel S, Björklund S, Curry N, Govindarajan S, Wiklund U, Gaudiuso C, et al. Axial Plasma Spraying of mixed suspensions: a case study on processing, characteristics, and tribological behavior of Al2O3-YSZ coatings. Applied Sciences. 2020 Jan;10(15):5140.
- [36] Chidambaram Seshadri R, Sampath S. Characteristics of conventional and cascaded arc plasma spray-deposited ceramic under standard and high-throughput conditions. J Therm Spray Tech. 2019 Apr 1;28(4):690–705.
- [37] Sokołowski P, Kozerski S, Pawłowski L, Ambroziak A. The key process parameters influencing formation of columnar microstructure in suspension plasma sprayed zirconia coatings. Surface and Coatings Technology. 2014 Dec 15;260:97–106.
- [38] Fazilleau J, Delbos C, Rat V, Coudert JF, Fauchais P, Pateyron B. Phenomena involved in Suspension Plasma Spraying Part 1: suspension injection and behavior. Plasma Chem Plasma Process. 2006 Aug 1;26(4):371–91.
- [39] Toma F-L, Berger L-M, Stahr CC, Naumann T, Langner S. Microstructures and functional properties of suspension-sprayed Al2O3 and TiO2 coatings: an overview. J Therm Spray Tech. 2010 Jan 1;19(1–2):262–74.
- [40] Müller P, Killinger A, Gadow R. Comparison between High-Velocity Suspension Flame Spraying and Suspension Plasma Spraying of alumina. J Therm Spray Tech. 2012 Dec 1;21(6):1120–7.
- [41] Stahr CC, Saaro S, Berger L-M, Dubsky J, Neufuss K, Herrmann M. Dependence of the stabilization of α-alumina on the spray process. Journal of Thermal Spray Technology. 2007;16(5–6):822–30.
- [42] Chráska P, Dubsky J, Neufuss K, Písacka J. Alumina-base plasma-sprayed materials part I: Phase stability of alumina and alumina-chromia. J Therm Spray Tech. 1997 Sep 1;6(3):320–6.
- [43] Cipri F, Marra F, Pulci G, Tirillò J, Bartuli C, Valente T. Plasma sprayed composite coatings obtained by liquid injection of secondary phases. Surface and Coatings Technology. 2009 May 25;203(15):2116–24.
- [44] Jiang X-Y, Hu J, Jiang S-L, Wang X, Zhang L-B, Li Q, et al. Effect of high-enthalpy atmospheric plasma spraying parameters on the mechanical and wear resistant properties of alumina ceramic coatings. Surface and Coatings Technology. 2021 Jul 25;418:127193.
- [45] Bannier E, Vicent M, Rayón E, Benavente R, Salvador MD, Sánchez E. Effect of TiO2 addition on the microstructure and nanomechanical properties of Al2O3 Suspension Plasma Sprayed coatings. Applied Surface Science. 2014 Oct 15;316:141–6.
- [46] Dai L, Wang T, Jin B, Liu N, Niu Y, Meng W, et al. γ-Al2O3 coating layer confining zinc dendrite growth for high stability aqueous rechargeable zinc-ion batteries. Surface and Coatings Technology. 2021 Dec 15;427:127813.
- [47] Lee JG, Jeon OS, Ryu KH, Park MG, Min SH, Hyun SH, et al. Effects of 8 mol% yttria-stabilized zirconia with copper oxide on solid oxide fuel cell performance. Ceramics International. 2015 Jul;41(6):7982–8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5900df43-fe41-4011-8ac3-5ffd49eb02a9