PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analogue modelling of flow patterns in bobbin friction stir welding by the dark-field/bright-field illumination method

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The flow-inducing effect of the bobbin-tool features (tri-flat pin and scrolled shoulder) were replicated by a simple analogue model for aluminium welds by layered plasticine samples. Flow patterns of the weld zone were clarified by a typical stereomicroscopy instrument assisted by dark-field/bright-field illumination. The effects of the pin features, specifically threads and flats in centre of bond zone and scrolled shoulder in sides of stirred zone, were identified. This study shows that internal flow features for BFSW welds is transferable from the friction stir welding process to the functional metal forming processes such where the shearing can extensively affect the microstructure. The similarity between the flow pattern of the provided aluminium samples and the plasticine analogue can validate the accuracy of the flow model presented in this work.
Rocznik
Strony
56--70
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • University of Canterbury, Department of Mechanical Engineering, 8140 Christchurch, New Zealand
autor
  • University of Canterbury, Department of Mechanical Engineering, 8140 Christchurch, New Zealand
autor
  • University of Canterbury, Department of Mechanical Engineering, 8140 Christchurch, New Zealand
Bibliografia
  • 1. Tashkandi MA, Al-Jarrah JA, Ibrahim M. Increasing of the Mechanical Properties of Friction Stir Welded Joints of 6061 Aluminum Alloy by Introducing Alumina Particles. Advances in Materials Science. 2017, 17(2), 29-40.
  • 2. Thomas, W.; Nicholas, E.; Needham, J.; Murch, M.; Temple-Smith, P.; Dawes, C. Friction stir butt weld-ing, international patent application no. PCT/GB92 Patent application 1991.
  • 3. Thomas, W.; Wiesner, C.; Marks, D.; Staines, D. Conventional and bobbin friction stir welding of 12% chromium alloy steel using composite refractory tool materials. Science and Technology of Welding and Joining 2009, 14, 247-253.
  • 4. Threadgill, P.; Leonard, A.; Shercliff, H.; Withers, P. Friction stir welding of aluminium alloys. Interna-tional Materials Reviews 2009, 54, 49-93.
  • 5. Fuse, K.; Badheka, V. Bobbin tool friction stir welding: A review. Science and Technology of Welding and Joining 2019, 24, 277-304.
  • 6. Goetze, P.; Kopyściański, M.; Hamilton, C.; Dymek, S. Comparison of dissimilar aluminum alloys joined by friction stir welding with conventional and bobbin tools. In Friction stir welding and processing X, Springer: 2019, 3-12.
  • 7. Iwaszko, J.; Kudła, K. Effect of friction stir processing (FSP) on microstructure and hardness of almg10/sic composite. Bulletin of the Polish Academy of Sciences. Technical Sciences 2019, 67, 185-192.
  • 8. Yang, C.; Ni, D.; Xue, P.; Xiao, B.; Wang, W.; Wang, K.; Ma, Z. A comparative research on bobbin tool and conventional friction stir welding of al-mg-si alloy plates. Materials Characterization 2018, 145, 20-28.
  • 9. Xu, W.; Luo, Y.; Fu, M. Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-t7452 aluminum alloy. Materials Characterization 2018, 138, 48-55.
  • 10. Kalemba-Rec, I.; Kopyściański, M.; Miara, D.; Krasnowski, K. Effect of process parameters on mechan-ical properties of friction stir welded dissimilar 7075-T651 and 5083-H111 aluminum alloys. The Interna-tional Journal of Advanced Manufacturing Technology 2018, 97, 2767-2779.
  • 11. Tamadon, A.; Pons, D.J.; Clucas, D. Structural anatomy of tunnel void defect in bobbin friction stir weld-ing, elucidated by the analogue modelling. Applied System Innovation 2020, 3, 2.
  • 12. Tamadon, A.; Pons, D.J.; Clucas, D.; Sued, K. Internal material flow layers in AA6082-T6 butt-joints during bobbin friction stir welding. Metals 2019, 9, 1059.
  • 13. Kluz, R.; Kubit, A.; Trzepiecinski, T.; Faes, K.; Bochnowski, W. A weighting grade-based optimization method for determining refill friction stir spot welding process parameters. Journal of Materials Engineering and Performance 2019, 28, 6471-6482.
  • 14. Tamadon, A.; Pons, D.; Sued, M.; Clucas, D.; Wong, E. Preparation of plasticine material for analogue modelling, Proceedings of the International Conference on Innovative Design and Manufacturing (ICIDM2016), Auckland, New Zealand, 24-26 January 2016, 2016; Auckland, New Zealand.
  • 15. Tamadon, A.; Pons, D.; Sued, M.; Clucas, D.; Wong, E. Analogue modelling of bobbin tool friction stir welding, Proceedings of the International Conference on Innovative Design and Manufacturing (ICIDM2016), Auckland, New Zealand, 24-26 January 2016, 2016; Auckland, New Zealand.
  • 16. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Formation mechanisms for entry and exit defects in bobbin friction stir welding. Metals 2018, 8, 33.
  • 17. Sued, M.; Tamadon, A.; Pons, D. Material flow visualization in bobbin friction stir welding by analogue model. Proceedings of Mechanical Engineering Research Day 2017, 2017, 1-2.
  • 18. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Development of metallographic etchants for the microstruc-ture evolution of A6082-T6 BFSW welds. Metals 2017, 7, 423.
  • 19. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Thermomechanical grain refinement in AA6082-T6 thin plates under bobbin friction stir welding. Metals 2018, 8, 375.
  • 20. Liu, X.; Wu, C.; Padhy, G.K. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding. Scripta Materialia 2015, 102, 95-98.
  • 21. Tamadon, A.; Pons, D.J.; Clucas, D.; Sued, K. Texture evolution in AA6082-T6 BFSW welds: Optical microscopy and EBSD characterisation. Materials 2019, 12, 3215.
  • 22. Tamadon, A.; Pons, D.J.; Clucas, D. AFM characterization of stir-induced micro-flow features within the AA6082-T6 BFSW welds. Technologies 2019, 7, 80.
  • 23. Padhy, G.; Wu, C.; Gao, S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review. Journal of Materials Science & Technology 2018, 34, 1-38.
  • 24. Sued, M.; Pons, D.; Lavroff, J.; Wong, E.-H. Design features for bobbin friction stir welding tools: De-velopment of a conceptual model linking the underlying physics to the production process. Materials & De-sign 2014, 54, 632-643.
  • 25. Rhodes, C.; Mahoney, M.; Bingel, W.; Spurling, R.; Bampton, C. Effects of friction stir welding on mi-crostructure of 7075 aluminum. Scripta Materialia 1997, 36, 69-75.
  • 26. Colligan, K. Material flow behavior during friction welding of aluminum. Welding Journal 1999, 75, 229-237.
  • 27. Dialami, N.; Cervera, M.; Chiumenti, M. Effect of the tool tilt angle on the heat generation and the mate-rial flow in friction stir welding. Metals 2019, 9, 28.
  • 28. Dialami, N.; Chiumenti, M.; Cervera, M.; Agelet de Saracibar, C.; Ponthot, J.P. Material flow visualiza-tion in friction stir welding via particle tracing. International Journal of Material Forming 2015, 8, 167-181.
  • 29. He, X.C. Computational investigation of mechanical behaviour of FSW joints, Applied Mechanics and Materials, 2013, 389, 260-266.
  • 30. Hilgert, J.; Dos Santos, J.; Huber, N. Shear layer modelling for bobbin tool friction stir welding. Science and Technology of Welding and Joining 2012, 17, 454-459.
  • 31. Hilgert, J.; Hütsch, L.L.; dos Santos, J.; Huber, N. In Material flow around a bobbin tool for friction stir welding, Excerpt from the Proceedings of the COMSOL Conference, 2010.
  • 32. Gadakh, V.S.; Kumar, A.; Vikhe Patil, G.J. Analytical modeling of the friction stir welding process using different pin profiles. Welding Journal 2015, 94, 115-124.
  • 33. He, X.; Gu, F.; Ball, A. A review of numerical analysis of friction stir welding. Progress in Materials Science 2014, 65, 1-66.
  • 34. Khan, N.Z.; Siddiquee, A.N.; Khan, Z.A.; Shihab, S.K. Investigations on tunneling and kissing bond defects in fsw joints for dissimilar aluminum alloys. Journal of Alloys and Compounds 2015, 648, 360-367.
  • 35. Kim, S.-D.; Yoon, J.-Y.; Na, S.-J. A study on the characteristics of FSW tool shapes based on CFD anal-ysis. Welding in the World 2017, 61, 915-926.
  • 36. Liechty, B.; Webb, B. Modeling the frictional boundary condition in friction stir welding. International Journal of Machine Tools and Manufacture 2008, 48, 1474-1485.
  • 37. Moradi, M.M.; Aval, H.J.; Jamaati, R. Effect of tool pin geometry and weld pass number on microstruc-tural, natural aging and mechanical behaviour of sic-incorporated dissimilar friction-stir-welded aluminium alloys. Sādhanā 2019, 44, 9.
  • 38. Patel, V.; Li, W.; Vairis, A.; Badheka, V. Recent development in friction stir processing as a solid-state grain refinement technique: Microstructural evolution and property enhancement. Critical Reviews in Solid State and Materials Sciences 2019, 44, 378-426.
  • 39. Tamadon, A.; Pons, D.J.; Clucas, D. Flow-based anatomy of bobbin friction-stirred weld; AA6082-T6 aluminium plate and analogue plasticine model. Applied Mechanics 2020, 1, 3-19.
  • 40. Tamadon, A.; Pons, D.J.; Clucas, D. Microstructural study on thermomechanical behaviour of 6082-T6 aluminium BFSW weld plates. In Materials@UC 2018 Conference, Christchurch, New Zealand, 2018.
  • 41. Tamadon, A.; Pons, D.J.; Clucas, D. Thermomechanical performance of bobbin tool design as an in-novative variant for friction stir welding. In Manufacturing and Design Conference (MaD 2019) Auckland, New Zealand, 2019.
  • 42. Tamadon, A. Characterization of flow-based bobbin friction stir welding process. Ph.D. Thesis, Universi-ty of Canterbury, Christchurch, New Zealand, 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58ff741d-5cde-4182-8dc4-dfd4530205f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.