PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metal-ceramic functionally graded materials – manufacturing, characterization, application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Functionally graded materials (FGMs) belong to a new, continuously developing group of materials, finding application in various branches of industry. The idea of freely designing their construction profile, restricted only by the available manufacturing techniques, enables obtaining materials with composition and structure gradients having unprecedented properties. In this paper, selected results of works carried out by the authors and relating to the application of the developed metal-ceramic composites were presented in order to manufacture functionally graded materials for target purposes. Gradient structures with various construction profiles that can play different roles were produced on the basis on the following material pairs: Cr-Al2O3, NiAl-Al2O3 and Cu-AlN. Manufacturing conditions, microstructure characteristics and selected properties, crucial from the point of view of future applications, were presented.
Rocznik
Strony
151--160
Opis fizyczny
Bibliogr. 44 poz., rys., wykr., tab.
Twórcy
  • Institute of Electronic Materials Technology, 133 Wólczyńska St, 01-919 Warsaw, Poland
autor
  • Institute of Electronic Materials Technology, 133 Wólczyńska St, 01-919 Warsaw, Poland
Bibliografia
  • [1] M. Koizumi, “The concept of FGM”, Ceramic Transactions 34, 3-11 (1993).
  • [2] Y.M. Shabana and N. Noda, “Thermo-elasto-plastic stresses in functionally graded materials subjected to thermal loading taking residual stresses of the fabrication process into consideration”, Composites Part B 32, 111-121 (2001).
  • [3] B. Kieback, A. Neubrand, and H. Riedel, “Processing techniques for functionally graded materials”, Materials Science and Engineering A362, 81-105, (2003).
  • [4] R. Zybala and K.T. Wojciechowski, “Anisotropy analysis of thermoelectric properties of Bi2Te2.9Se0.1 prepared by the SPS method”, Proc. 9th Eur. Conf. on Thermoelectrics (ECT), AIP Conf. Proc. 1, 393-396 (2011).
  • [5] M. Barlak, “Creep resistant gradient Al2O3-Cr composites”, Composites - Theory and Practice 1, 105-113 (2000).
  • [6] M.A. Uusitalo, P.M.J. Vuoristo, and T.A. Mantyla,”High temperature corrosion of coatings and boiler steels in reducing chlorine-containing atmosphere”, Surface and Coatings Technology 161 (2-3), 275-285 (2002).
  • [7] M.F. Morks and C.C. Berndt, “Corrosion and oxidation properties of NiCr coatings sprayed in presence of gas shroud system”, Applied Surface Science 256, 4322-4327 (2010).
  • [8] J. Zimmerman, Z.Lindemann, D.Golanski, T. Chmielewski, and W. Wlosinski, “Modeling residual stresses generated in Ti coatings thermally sprayed on Al2O3 substrates”, Bull. Pol. Ac.: Tech. 61 (2), 515-525 (2013).
  • [9] L. Feng and J. Junhong, “Tribological properties and wear mechanisms of NiCr-Al2O3-SrSO4-Ag self-lubricating composites at elevated temperatures”, Tribology Letters 49 (1), 281-290 (2013).
  • [10] M. Chmielewski, K. Pietrzak, Processing, microstructure and mechanical properties of Al2O3-Cr nanocomposites, J. Eur Ceramic Society 27 (2-3), 1273-1279 (2007).
  • [11] W. Węglewski, M. Basista, A. Manescu, M. Chmielewski, K. Pietrzak, and Th. Schubert, “Effect of grain size on thermal residual stresses and damage in sintered chromium-alumina composites: measurement and modeling”, Composites Part B 67, 119-124 (2014).
  • [12] M. Chmielewski, K. Pietrzak, A. Strojny-Nedza, B. Dubiel, and A. Czyrska-Filemonowicz, “Effect of rhenium addition on the strengthening of chromium-alumina composite materials”, Int. J. Materials Research 105 (2), 200-207 (2014).
  • [13] P. Caron and T. Khan, “Evolution of Ni-based superalloys for single crystal gas turbine blade applications”, Aerospace Science and Technology 3, 513-523 (1999).
  • [14] W. Wlosinski and T. Chmielewski, “Plasma-hardfaced chromium protective coatings-effect of ceramic reinforcement on their wettability by glass”, Contributions of Surface Engineering to Modern Manufacturing and Remanufacturing 1, 48-53 (2002).
  • [15] M.Y. Zhou, J.T. Xi, and J.Q. Yan, “Modeling and processing of functionally graded materials for rapid prototyping”, J. Materials Processing Technology 146 (3), 396-402 (2004).
  • [16] M. Szafran, K. Konopka, E. Bobryk, and J.K. Kurzydlowski, “Ceramic matrix composites with gradient concentration of metal particles”, J. Eur. Ceramic Society 27 (2-3), 651-654 (2007).
  • [17] W. Zorawski, R. Chatys, N. Radek, and J. Borowiecka- Jamrozek, “Plasma-sprayed composite coatings with reduced friction coefficient”, Surface and Coatings Technology 202, 4578-4582 (2008).
  • [18] C. Pierlot, L. Pawlowski, M. Bigan, and P. Chagnon, “Design of experiments in thermal spraying: a review”, Surface and Coatings Technology 202, 4483-4490 (2008).
  • [19] T. Chmielewski, D. Golanski, and W. Wlosinski, “Metallization of ceramic materials based on the kinetic energy of detonation waves”, Bul. Pol. Ac.: Tech. 63 (2), 449-456 (2015).
  • [20] K. Pietrzak, W. Olesinska, D. Kalinski, and A. Strojny- Nedza, “The relationship between microstructure and mechanical properties of directly bonded copper-alumina ceramics joints”, Bul. Pol. Ac.: Tech. 62 (1), 23-32 (2014).
  • [21] K. Pietrzak, D. Kaliński, and M. Chmielewski, “Interlayer of Al2O3-Cr functionally graded material for reduction of thermal stresses in alumina - heat resisting steel joints”, J. Eur. Ceramic Society 27 (2-3), 1281-1286 (2007).
  • [22] L. Salbut, M. Kujawinska, M. Jozwik, and D. Golanski,” Investigation of ceramic-to-metal joint properties by hybrid moire interferometry/FEM analysis”, Interferometry ’99: Applications, Book Series: Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 3745, 298-306 (1999).
  • [23] H.Y. Yu, S. Sanday, and B. Rath, “Residual stresses in ceramicinterlayer- metal joints”, J. American Ceramic Society 76 (7), 1661-1664 (1993).
  • [24] M. Chmielewski, D. Kaliński, and K. Pietrzak, “Thermal residual stresses in alumina - heat resisting steel joints with an interlayer of Al2O3-Cr functionally graded material. Part I. Interlayer selection”, Advances in Manufacturing Science and Technology 28 (3), 99-111 (2004).
  • [25] M. Chmielewski, D. Kaliński, and K. Pietrzak, “Thermal residual stresses in alumina - heat resisting steel joints with an interlayer of Al2O3-Cr functionally graded material. Part II. Optimization of a functionally graded material for reduction of thermal stresses”, Advances in Manufacturing Science and Technology 28 (4), 68-77 (2004).
  • [26] A.M. Glaeser, “The use of transient FGM interlayers for joining advanced ceramics”, Composites Part B 28 (1-2), 71-84 (1997).
  • [27] C.S. Lee, X.F. Zhang, and G. Thomas, “Novel joining of dissimilar ceramics in the Si3N4-Al2O3 system using polytypoid functional gradients”, Acta Materialia. 49 (18), 3775-3780 (2001).
  • [28] T. Weber and J. Aktaa, “Numerical assessment of functionally graded tungsten/steel joints for divertor applications”, Fusion Engineering and Design 86 (2-3), 220-226 (2011).
  • [29] Micro and Nanocrystalline Functionally Graded Materials for Transport Applications (MATRANS), project financed within European Union’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 228869
  • [30] S. Nosewicz, J. Rojek, S. Mackiewicz, M. Chmielewski, K. Pietrzak, and B. Romelczyk, “The influence of hot pressing conditions on mechanical properties of nickel aluminide/ alumina composite”, J. Composite Materials 48 (29), 3577-3589 (2014).
  • [31] R. Darolia, “Ductility and fracture toughness issues related to implementation of NiAl for gas turbine applications”, Intermetallics 8, 1321-1327 (2000).
  • [32] M. Chmielewski, S. Nosewicz, K. Pietrzak, J. Rojek, A. Strojny-Nędza, S. Mackiewicz, and J. Dutkiewicz, “Sintering behaviour and mechanical properties of NiAl, Al2O3, and NiAl-Al2O3 composites”, J. Materials Engineering and Performance 23, 3875-3886 (2014).
  • [33] D. Kaliński, M. Chmielewski, K. Pietrzak, and K. Choręgiewicz, “An influence of mechanical mixing and hotpressing on properties of NiAl/Al2O3composite”, Archives of Metallurgy and Materials 57 (3) 694-702 (2012).
  • [34] D. Tingaud and F. Nardou, “Influence of non-reactive particles on the microstructure of NiAl and NiAl-ZrO2 process by thermal explosion”, Intermetallics 16, 732-737 (2008).
  • [35] W.H. Tuan, Toughening alumina with nickel aluminide inclusions, J. Eur. Ceramic Society 20, 895-899 (2000).
  • [36] J. Cook, C.C. Evans, J.E. Gordon, and D.M. Marsh, “Mechanism for control of crack propagation in all-brittle systems”, Proc. Royal Society of London Series A-Mathematical and Physical Sciences 1, 282 (1390), 508-520 (1964).
  • [37] P. Mankowski, A. Dominiak, R. Domanski, M.J. Kruszewski, and L. Ciupinski, “Thermal conductivity enhancement of copper-diamond composites by sintering with chromium additive”, J. Thermal Analysis and Calorimetry 116 (2), 881-885 (2014).
  • [38] K. Jagannadham, “Orientation dependence of thermal conductivity in copper-graphene composites”, J. Applied Physics 110, 074901 (2011).
  • [39] Th. Schubert, B. Trindade, T. Weissgaerber, and B. Kieback, “Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications”, Materials Science and Engineering A475 (1-2), 39-44 (2008).
  • [40] J. Tian and K. Shobu, “Hot-pressed AlN-Cu metal matrix composites and their thermal properties”, J. Materials Science 39, 1309-1313, (2004).
  • [41] A. Strojny-Nedza and K. Pietrzak, “Processing, microstructure and properties of different method obtained Cu-Al2O3 composites”, Archives of Metallurgy and Materials 59 (4), 1307-1312 (2014).
  • [42] M. Chmielewski, D. Kaliński, K. Pietrzak, and W. Włosiński, “Relationship between mixing conditions and properties of sintered 20AlN/80Cu composite materials”, Archives of Metallurgy and Materials 55 (2), 579-585 (2010).
  • [43] M. Chmielewski and W. Weglewski, “Comparison of experimental and modelling results of thermal properties in Cu-AlN composite materials”, Bull. Pol. Ac.: Tech. 61 (2), 507-514 (2013).
  • [44] R.M. Mahamood and E.T. Akinlabi, “Functionally graded material: an overview”, Proc. World Cong. Engineering 1, CDROM (2012).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58fe177c-fc2d-4eac-a75a-b70ad77a13e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.