PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Przemysłowe zastosowania lipaz w syntezie związków o wysokiej wartości dodanej – 85 lat katalizy enzymatycznej lipazami. Część 1

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Industrial applications of lipases in the synthesis of high added-value chemicals – 85 years of lipase-based enzymatic catalysis. Part 1
Języki publikacji
PL
Abstrakty
EN
Lipases (EC 3.1.1.3; triacylglycerol acylhydrolases) are the most commonly used enzymes in biotransformations of organic compounds. In living organisms lipases catalyze hydrolysis of higher fatty acid esters of glycerol, thus fulfill an essential function in metabolism of lipids (e.g. fats and oils) and lipoproteins. This year marks 125 years since J.R. Green has identified and described the first lipase isolated from germinated castor-oil beans (Ricinus communis L.) in the form of an extract showing hydrolytic properties. Plants, as well as bacteria are able to produce lipases what was reported in 1901 by Dutch scientist ‒ Christiaan Eijkman. Lipases are also produced by fungi, yeasts, and various organs of higher organisms. A strong foundation, which had a huge impact on the development of global lipase-mediated biotransformations was the discovery made in 1935 and described in Biochemistry Journal and Biochemische Zeitschrift by Polish biochemist- -enzymologist Ernest Alexander Sym (1893-1950) that these enzymes retain almost full catalytic activity even in nearly anhydrous organic solvents. This was exactly fifty years before Russian chemist Alexander Klibanov in 1985 described a lipase- -catalyzed reaction carried out in organic solvents. Since that moment, lipases have became extremely popular in both academic and industrial usage, nowadays being the most important among all biocatalysts used in biochemical processes carried out on an industrial scale. The purpose of this article is to provide a brief characterization of the two most widely used in industrial biotransformations lipases ‒ lipase B from Candida antarctica (CAL-B) and lipase from Burkholderia cepacia (BCL) ‒ and familiarize the readers with the issues of biotechnological processes catalyzed by them. The specifics of a range of industrial applications based on lipase catalysis, including the chemical, pharmaceutical, cosmetic and food industries are also discussed. Keywords:
Rocznik
Strony
391--430
Opis fizyczny
Bibliogr. 88 poz., rys., schem.
Twórcy
  • Politechnika Warszawska, Wydział Chemiczny, Instytut Biotechnologii, ul. Noakowskiego 3, 00-664 Warszawa
Bibliografia
  • [1] A. Ghanem, Tetrahedron, 2007, 63, 1721.
  • [2] R.J. Hickey, R.H. Vaughn, Industrial fermentation: Chapter 17-Acetic acid (vinegar), Vol 1. New York: Chemical Publishing Co., Inc. 1954, str. 498.
  • [3] P.-L. Show, T.-C. Ling, J.C.-W. Lan, B.-T. Tey, R.N. Ramanan, S.-T. Yong, C.-W. Ooi, Curr. Org. Chem., 2015, 19, 19.
  • [4] G. Yang, Y. Ding, Bioorg. Med. Chem., 2014, 22, 5604.
  • [5] L. Bora, D. Gohain, R. Das, J. Chem. Technol. Biotechnol., 2013, 88, 1959.
  • [6] M.T. Reetz, J. Am. Chem. Soc., 2013, 135, 12480.
  • [7] M. Marciello, M. Filice, J.M. Palomo, Catal. Sci. Technol., 2012, 2, 1531.
  • [8] K.-E. Jaeger, T. Eggert, Curr. Opin. Biotechnol., 2002, 13, 390.
  • [9] C. Schmidt-Dannert, Bioorg. Med. Chem., 1999, 7, 2123.
  • [10] J.R. Green, Proc. Roy. Soc., 1890, 48, 370.
  • [11] C. Eijkman, Zentralblatt fur Bakteriologie Parasitenkunde Infektionskrankheiten und Hygiene, 1901, 29, 841.
  • [12] S. Thakur, Int. J. Sci. Eng. Res., 2012, 3, 1.
  • [13] R. Sharma, Y. Chisti, U. C. Banerjee, Biotechnol. Adv., 2001, 19, 627.
  • [14] K.-E. Jaeger, B.W. Dijkstra, M.T. Reetz, Annu. Rev. Microbiol., 1999, 53, 315.
  • [15] R.D. Schmid, Verger, R. Angew. Chem. Int. Ed., 1998, 37, 1608.
  • [16] Prof. Dr. Ernest A. Sym (1893-1950), Biul. Państw. Inst. Med. Morsk. Trop. J. w Gdańsku, 1952, 4, 3.
  • [17] E. Mikulaszek, Gruźl., 1951, 4, 430.
  • [18] S. Nyrek, Med. Wet., 1954, 40.
  • [19] W. Mozołowski, Pol. Tyg. Lek., 1950, 5, 1633.
  • [20] E. Mikulaszek, Rocz. Tow. Nauk. Warsz., 1950, R.43, 216.
  • [21] E.A. Sym, Biochem. J., 1936, 30, 609.
  • [22] E.A. Sym, Enzymologia, 1936, 1, 156.
  • [23] E.A. Sym, Biochem. Z., 1933, 258, 304.
  • [24] E.A. Sym, Biochem. Z., 1931, 230, 19.
  • [25] E.A. Sym, Biochem. J., 1930, 24, 1265.
  • [26] E.A. Sym, Biologja Lekarska, 1936, R.15 nr 6, 245.
  • [27] M.H. Coleman, A.R. Macrae, Fat process and composition, 1980, GB 1577933.
  • [28] M. Takaharu, S. Norio, H. Yukio, H. Wataru, Method for enzymatic interesterification of lipid and enzyme used therein, 1981, EP 0035883.
  • [29] A. Zaks, A.M. Klibanov, Proc. Natl. Acad. Sci., 1985, 82, 3192.
  • [30] M. Masayoshi, K. Tadashi, Optically active 4-hydroxy-2-cyclopentenones, and their production, 1988, US 4729953.
  • [31] M.A. Robin, P.F. Bolton, C.I. Christopher, Transesterification, 1990, EP 0417823.
  • [32] J. Whittall, P. Sutton, Practical Methods for Biocatalysis and Biotransformations 2, John Wiley &Sons 2012.
  • [33] A. Liese, K. Seelbach, C. Wandrey, Industrial Biotransformations, Second Edition, Wiley-VCH, Weinheim, Deutschland 2006.
  • [34] C.T. Hou, Handbook of Industrial Biocatalysis, CRS Press, Taylor & Francis Group, LCC 2005.
  • [35] N. End, K.U. Schoning, Immobilized Biocatalysts in Industrial Research and Production w Topics in Current Chemistry, 2004, 242, 273, Springer-Verlag Berlin Heidelberg 2004.
  • [36] A. Idris, A. Bukhari, Biotechnol. Adv., 2012, 30, 550.
  • [37] O. Kirk, M.W. Christensen, Org. Proc. Res. Dev., 2002, 6, 446.
  • [38] E.M. Anderson, K.M. Larsson, O. Kirk, Biocatal. Biotransfor., 1998, 16, 181.
  • [39] J. Uppenberg, M.T. Hansen, S. Patkar, T.A. Jones, Structure, 1994, 2, 293.
  • [40] J. Uppenberg, S. Patkar, T. Bergfors, T.A. Jones, J. Mol. Biol., 1994, 235, 790.
  • [41] P. Trodler, J. Pleiss, BMC Struct. Biol., 2008, 8, 9.
  • [42] M. Martinelle, M. Holmquist, K. Hult, Biochim. Biophys. Acta (BBA) – Lipids and Lipid Metabolism, 1995, 1258, 272.
  • [43] R.A. Kemp, A.R. Macrae, Esterification process, 1992, Unichema Chemie BV, EP0506159.
  • [44] P. Stead, H. Marley, M. Mahmoudian, G. Webb, D. Noble, Y.T. Ip, E. Piga, T. Rossi, S. Roberts, M.J. Dawson, Tetrahedron: Asymm., 1996, 7, 2247.
  • [45] B. Morgan, D.R. Dodds, A. Zaks, D.R. Andrews, R. Klesse, J. Org. Chem., 1997, 62, 7736.
  • [46] A.K. Saksena, V.M. Girijavallabhan, R.G. Lovey, R.E. Pike, H. Wang, A.K. Ganguly, B. Morgan, A. Zaks, M.S. Puar, Tetrahedron Lett., 1995, 36, 1787.
  • [47] N. Igarashi, S. Otsutomo, M. Harata, S. Nakano, Production of optically active trans-2-bromoindan- -1-ol, 1998, Jpn Kokai Tokkyo Koho JP10014593.
  • [48] S. Bourg-Garros, N. Razafindramboa, A.A. Pavia, Biotechnol. Bioeng., 1998, 59, 495.
  • [49] B. Orsat, P. Spurr, B. Wirz, Enzymatic acylation of a retinol derivative, 1997, Eur. Pat. Appl. EP802261.
  • [50] B. Orsat, B. Wirz, S. Bischof, CHIMIA Int. J. for Chem., 1999, 53, 579.
  • [51] M. Mahmoudian, J. Eaddy, M. Dawson, Biotechnol. Appl. Biochem., 1999, 29, 229.
  • [52] K. Laumen, O. Ghisalba, Biosci. Biotechnol. Biochem., 1999, 63, 1374.
  • [53] T. Mine, T. Yui, Optically active secondary alcohol and process for the production thereof, 2000, Eur. Pat. Appl. EP980860.
  • [54] R. Otto, B. Geers, A. Weiss, D. Petersohn, K. Schlotmann, K.R. Schroeder, Novel flavone glycoside derivatives for use in cosmetics, pharmaceuticals and nutrition, 2001, PCT Int. Appl., WO0179245.
  • [55] M.J. Homann, R. Vail, B. Morgan, V. Sabesan, C. Levy, D.R. Dodds, A. Zaks, Adv. Synth. Catal. 2001, 343, 744.
  • [56] R.J. Atkins, A. Banks, R.K. Bellingham, G.F. Breen, J.S. Carey, S.K. Etridge, J.F. Hayes, N. Hussain, D.O. Morgan, P. Oxley, S.C. Passey, T.C. Walsgrove, A.S. Wells, Org. Process Res. Dev., 2003, 7, 663.
  • [57] T.C. Walsgrove, L. Powell, A. Wells, Org. Process Res. Dev., 2002, 6, 488.
  • [58] A.S. Wells, Enzymatic resolution of benzodiazepine-acetic acid esters with a lipase, 1998, PCT Int. Appl., WO9829561.
  • [59] W. Albrecht, R. Otto, Esters of uronic acids, 2003, Eur. Pat. Appl., EP1306443.
  • [60] M. Tamarez, B. Morgan, G.S.K. Wong, W. Tong, F. Bennett, R. Lovey, J.L. McCormick, A. Zaks, Org. Proc. Res. Dev., 2003, 7, 951.
  • [61] R. ter Halle, Y. Bernet, S. Billard, C. Bufferne, P. Carlier, C. Delaitre, C. Flouzat, G. Humblot, J.C. Laigle, F. Lombard, S. Wilmouth, Org. Proc. Res. Dev., 2004, 8, 283.
  • [62] P. Ramesh, T. Harini, N.W. Fadnavis, Org. Proc. Res. Dev., 2015, 19, 296.
  • [63] R. Vaidyanathan, L. Hesmondhalgh, S. Hu, Org. Proc. Res. Dev., 2007, 11, 903.
  • [64] A. Goswami, T.P. Kissick, Org. Proc. Res. Dev., 2009, 13, 483.
  • [65] L.K. Thalen, J.E. Backvall, Beilstein J. Org. Chem., 2010, 6, 823.
  • [66] C. Korupp, R. Weberskirch, J.J. Muller, A. Liese, L. Hilterhaus, Org. Proc. Res. Dev., 2010, 14, 1118.
  • [67] Z. Li, Y. Zhang, M. Lin, P. Ouyang, J. Ge, Z. Liu, Org. Proc. Res. Dev., 2013, 17, 1179.
  • [68] Z. Guo, M.K.Y. Wong, M.R. Hickey, B.P. Patel, X. Qian, A. Goswami, Org. Proc. Res. Dev., 2014, 18, 774.
  • [69] G. Ma, Z. Xu, P. Zhang, J. Liu, X. Hao, J. Ouyang, P. Liang, S. You, X. Jia, Org. Proc. Res. Dev., 2014, 18, 1169.
  • [70] C.-J. Aurell, S. Karlsson, F. Ponten, S.M. Andersen, Org. Proc. Res. Dev., 2014, 18, 1116.
  • [71] C. Kim, J. Lee, J. Cho, Y. Oh, Y.K. Choi, E. Choi, J. Park, M.-J. Kim, J. Org. Chem., 2013, 78, 2571.
  • [72] A. Ghanem, H.Y. Aboul-Enein, Chirality, 2005, 17, 1.
  • [73] T. Schulz, J. Pleiss, R.D. Schmid, Protein Sci., 2000, 9, 1053.
  • [74] D.A. Lang, M.L.M. Mannesse, G.H. De Haas, H.M. Verheij, B.W. Dijkstra, Eur. J. Biochem., 1998, 254, 333.
  • [75] K.K. Kim, H.K. Song, D.H. Shin, K.Y. Hwang, S.W. Suh, Structure, 1997, 5, 173.
  • [76] J.D. Schrag, Y. Li, M. Cygler, D. Lang, T. Burgdorf, H.-J. Hecht, R. Schmid, D. Schomburg, T.J. Rydel, J.D. Oliver, L.C. Strickland, C.M. Dunaway, S.B. Larson, J. Day, A. McPherson, Structure, 1997, 5, 187.
  • [77] A. Mezzetti, J.D. Schrag, C.S. Cheong, R.J. Kazlauskas, Chem. Biol., 2005, 12, 427.
  • [78] R. Patel, C. McNamee, L. Szarka, Appl. Microbiol. Biotechnol. 1992, 38, 56.
  • [79] R.A. Parker, R.W. Clark, S.Y. Sit, T.L. Lanier, R.A. Grosso, J.J. Wright, J. Lipid Res., 1990, 31, 1271.
  • [80] R. Patel, M. Liu, A. Banerjee, L. Szarka, Appl. Microbiol. Biotechnol., 1992, 37, 180.
  • [81] R.N. Patel, A. Banerjee, R.Y. Ko, J.M. Howell, W.S. Li, F.T. Comezoglu, R.A. Partyka, F.T. Szarka, Biotechnol. Appl. Biochem., 1994, 20, 23.
  • [82] R.N. Patel, Enzymatic processes for the resolution of enantiomeric mixtures of compounds useful as intermediates in the preparation of taxanes, 1995, Eur. Pat. Appl., EP634492.
  • [83] J.C. Sih, J. Am. Oil Chem. Soc., 1996, 73, 1377.
  • [84] H. Hirohara, M. Nishizawa, Biosci. Biotechnol. Biochem., 1998, 62, 1.
  • [85] A. Goswami, J.M. Howell, E.Y. Hua, K.D. Mirfakhrae, M.C. Soumeillant, S. Swaminathan, X. Qian, F.A. Quiroz, T.C. Vu, X. Wang, B. Zheng, D.R. Kronenthal, R.N. Patel, Org. Proc. Res. Dev., 2001, 5, 415.
  • [86] Y. Momose, T. Maekawa, T. Yamano, M. Kawada, H. Odaka, H. Ikeda, T. Sohda, J. Med. Chem., 2002, 45, 1518.
  • [87] Y. Norimine, N. Yamamoto, Y. Suzuki, T. Kimura, K. Kawano, K. Ito, S. Nagato, Y. Iimura, M. Yonaga, Tetrahedron: Asymmetry, 2002, 13, 1493.
  • [88] O.-J. Park, S.-H. Lee, T.-Y. Park, W.-G. Chung, S.-W. Lee, Org. Proc. Res. Dev., 2006, 10, 588.
Uwagi
Dedykacja autora: Niniejszą pracę pragnę zadedykować pamięci Ernesta Aleksandra Syma (1893–1950) – polskiego biochemika, enzymologa z okazji 85-lecia katalizy enzymatycznej lipazami
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58f5e893-2048-46cd-8839-815bf57f98d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.