Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Multi-particle finite element method (MPFEM) simulation has been proven an efficient approach to study the densification behaviors during powder compaction. However, comprehensive comparisons between 2D and 3D MPFEM models should be made, in order to clarify which dimensional model produces more accurate prediction on the densification behaviors. In this paper, uniaxial high velocity compaction experiments using Ti-6Al-4V powder were performed under different impact energy per unit mass notated as Em. Both 2D and 3D MPFEM simulations on the powder compaction process were implemented under displacement control mode, in order to distinguish the differences. First, the experimental final green density of the compacts increased from 0.839 to 0.951 when Em was increased from 73.5 J/g to 171.5 J/g. Then detailed comparisons between two models were made with respect to the typical densification behaviors, such as the density-strain and density-pressure relations. It was revealed that densification of 2D MPFEM model could be relatively easier than 3D model for our case. Finally, validated by the experimental results, 3D MPFEM model generated more realistic predictions than 2D model, in terms of the final green density’s dependence on both the true strain and Em. The reasons were briefly explained by the discrepancies in both the particles’ degrees of freedom and the initial packing density.
Wydawca
Czasopismo
Rocznik
Tom
Strony
57--65
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab., wzory
Twórcy
autor
- Hefei University of Technology, School of Mechanical Engineering, Hefei, 230009, China
autor
- Hefei University of Technology, School of Mechanical Engineering, Hefei, 230009, China
autor
- Hefei University of Technology, School of Mechanical Engineering, Hefei, 230009, China
autor
- Hefei University of Technology, School of Mechanical Engineering, Hefei, 230009, China
autor
- Hefei University of Technology, School of Mechanical Engineering, Hefei, 230009, China
Bibliografia
- [1] C. Cui, B. Hu, L. Zhao , S. Liu, Mater. Des. 32 (3), 1684-1691 (2011).
- [2] Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, M. Free, Int. Mater. Rev. 63 (7), 407-459 (2018).
- [3] G. Sethi, E. Hauck, R.M. German, Mater. Sci. Technol. 22 (8), 955-959 (2006).
- [4] M. Eriksson, M. Andersson, E. Adolfsson, E. Carlstrom, Powder Metall. 49 (1), 70-77 (2006).
- [5] J. Johnson, R. German, Int. J. Powder Metall. 4 (1), 201-209 (1993).
- [6] D. Yim, W. Kim, S. Praveen, M.J. Jang, J.W. Bae, J. Moon, E. Kim, S.J. Hong, H.S. Kim, Mater. Sci. Eng. A 708, 291-300 (2017).
- [7] M. Eriksson, H.A. Haggblad, C. Berggren, M. Andersson, R. Holmersson, E. Carlstrom, Powder Metall. 47 (4), 335-342 (2004).
- [8] Z.Q. Yan, F. Chen, Y.X. Cai, Powder Technol. 208 (3), 596-599 (2011).
- [9] D.F. Khan, H.Q. Yin, H. Li, X.H. Qu, M. Khan, S. Ali, M.Z. Iqbal, Mater. Des. 50, 479-483 (2013).
- [10] Z.Q. Yan, F. Chen, Y.X. Cai, J. Yin, Trans. Nonferrous Met. Soc. China 23 (2), 361-365 (2013).
- [11] D.F. Khan, H.Q. Yin, H. Li, Z. Abideen, Asadullah, X.H. Qu, M. Ellahi, Mater. Des. 54, 149-153 (2014).
- [12] H. Li, H.Q. Yin, D.F. Khan, H.Q. Cao, Z. Abideen, X.H. Qu, Mater. Des. 57, 546-550 (2014).
- [13] H. Zhang, L. Zhang, G. Dong, Z. Liu, M. Qin, X. Qu, Powder Metall. 59 (2), 100-106 (2016).
- [14] R. Ransing, D. Gethin, A. Khoei, P. Mosbah, R. Lewis, Mater Design 21 (4), 263-269 (2000).
- [15] P. Han, X.Z. An, D.F. Wang, H.T. Fu, X.H. Yang, H. Zhang, Z.S. Zou, J. Alloys Compd. 741, 473-481 (2018).
- [16] P. Han, X.Z. An, Y.X. Zhang, F. Huang, T.X. Yang, H.T. Fu, X.H. Yang, Z.S. Zou, Powder Technol. 314, 69-77 (2017).
- [17] J. Zhang, Compos. Sci. Technol. 69 (13), 2048-2053 (2009).
- [18] K.H. Lee, J.M. Lee, B. M. Kim, Trans. Nonferrous Met. Soc. China 19, S68-S75 (2009).
- [19] A.T. Procopio, A. Zavaliangos, J. Mech. Phys. Solids 53 (7), 1523-1551 (2005).
- [20] F. Huang, X.Z. An, Y.X. Zhang, A.B. Yu, Powder Technol. 314, 39-48 (2017).
- [21] B. Harthong, D. Imbault, P. Doremus, J. Mech. Phys. Solids 60 (4), 784-801 (2012).
- [22] P. Loidolt, M.H. Uiz, J. Khinast, Powder Technol. 336, 426-440 (2018).
- [23] F. Guner, O.N. Cora, H. Sofuoglu, Powder Technol. 271, 238-247 (2015).
- [24] X. Xin, P. Jayaraman, G. Jiang, R. Wagoner, G. Daehn, Metall. Mater. Trans. A 33 (8), 2649-2658 (2002).
- [25] Q. Jia, X.Z. An, H.Y. Zhao, H.T. Fu, H. Zhang, X.H. Yang, J. Alloys Compd. 750, 341-349 (2018).
- [26] Y.X. Zhang, X.Z. An, Y.L. Zhang, Appl. Phys. A118 (3), 1015-1021 (2015).
- [27] Y. Lei, S. Yan, S. Huang, W. Liu, S. Sun, M. Zhou, F. Feng, Journal of Advanced Mechanical Design, Systems and Manufacturing 12 (1), 17-00619 (2018).
- [28] D.R. Kumar, R.K. Kumar, P.K. Philip, Journal of Applied Physics 85 (2), 767-775 (1999).
- [29] N.B. Bhalerao, S.S. Joshi, N.K. Naik, J. Eng. Mater. Technol. 140/021009 (2), 1-10 (2018).
- [30] R. Heckel, Trans. Metall. Soc. AIME 221 (4), 671-675 (1961).
Uwagi
1. The authors are grateful for the financial support from National Natural Science Foundation of China (grant numbers 51905141 and 51975174), Natural Science Foundation of Anhui province (grant number 1808085ME118), and the Fundamental Research Funds for the Central Universities, China (grant number JZ2021HGTB0086). The authors thank Ms. Xia Shu for providing help on using the experiment facilities.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58f530d5-05e2-470d-8d54-2f6820a572db