PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Development of the statistical model failure of orthotropic composite materials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A composite plate (matrix and reinforcing elements) under conditions of plane deformation is considered. According to the elastic properties, the material of the plate is considered orthotropic with uniformly distributed defects-cracks that do not interact with each other. The geometric characteristics of defects are statistically independent random variables – the half-length and the orientation angle between the defect line and the axis of orthotropy with a larger Young’s modulus. The ratio for the failure loading integral probability distribution function of the composite was obtained. The dependencies of the researched composite probability of failure (reliability) for the different number of cracks (plate sizes), different types of loading and various values of the exponential distribution parameter are calculated and investigated graphically.
Rocznik
Strony
26--35
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
  • Department of Mathematics, Lviv Polytechnic National University Lviv, Ukraine
Bibliografia
  • [1] Kolios, A., & Proia, S. (2012). Evaluation of the reliability performance of failure criteria for composite structures. World Journal of Mechanics, 2, 162-170. DOI: 10.4236/wjm.2012.23019.
  • [2] Balasubramanian, M. (2016). Statistical analysis of tensile strength and elongation of pulse TIG welded titanium alloy joints using Weibull distribution. Cogent Engineering, 3(1), 1-9. DOI: 10.1080/23311916.2016.1239298.
  • [3] Naresh, K., Shankar, K., & Velmurugan, R. (2018). Reliability analysis of tensile strengths using Weibull distribution in glass/epoxy and carbon/epoxy composites. Composites Part B: Engineering, 133(15), 129-144. DOI: 10.1016/j.compositesb.2017.09.002.
  • [4] Liang, H., Li, S., & Yang, T. (2018). Reliability study on FRP composites exposed to wet-dry cycles. Applied Sciences, 8(6), 892. DOI: 10.3390/app8060892.
  • [5] Zhi, J., & Tay, T.E. (2020). Interrogating failure mechanisms of notched composites through a discrete crack modeling approach. Composites Science and Technology, 196(18), 108203. DOI: 10.1016/j.compscitech.2020.108203.
  • [6] Tan, W., & Martínez-Pañeda, E. (2022). Phase field fracture predictions of microscopic bridging behaviour of composite materials. Composite Structures, 286, 115242. DOI: 10.1016/j.compstruct.2022.115242.
  • [7] Rakesh, P., More, A., Kumar, M., & Muthu, N. (2022). Probabilistic failure prediction in a double composite cantilever beam with single and double source uncertainty. Composite Structures, 279, 114870. DOI: 10.1016/j.compstruct.2021.114870.
  • [8] Leong, K.H., Zhi, J., Lee H.P., Tan, V.B.C., & Tay, T.E. (2022). Adaptive multi-fidelity (AMF) modelling of progressive damage in notched composite laminates. Composites Part A: Applied Science and Manufacturing, 154, 106790. DOI: 10.1016/j.compositesa.2021.106790.
  • [9] Serensen, S., & Zaitsev, G. (1982). Bearing Capacity of Thin-walled Structures Made of Reinforced Plastics with Defects. Kyiv, 295 (in Russian).
  • [10] Baitsar, R., & Kvit, R. (2018). Method of the reliability calculation of orthotropic composite materials with random defects. Scientific Journal ScienceRise, 10(10), 28-32. DOI: 10.15587/2313-8416.2018.146636.
  • [11] Panasyuk, V., Berezhnytskyi, L., & Hromiak, R. (1976). On the material structure influence on the cracks propagation during the body stretching. Reports of the Academy of Sciences of the Ukrainian SSR, 9, 811-816 (in Ukrainian).
  • [12] Deliavsky, M., & Kvit, R. (1992) Macro-stress distribution near crack like defects in anisotropic micro-inhomogeneous body under flat deformation and longitudinal displacement. Physicochemical Mechanics of Materials, 2, 50-54 (in Ukrainian).
  • [13] Kvit, R. (2022). Investigation of probabilistic aspects reliability of isotropic bodies with internal defects. Journal of Applied Mathematics and Computational Mechanics, 21(3), 73-84. DOI: 10.17512/jamcm.2022.3.06.
  • [14] Fisher, J., & Hollomon, J. (1947). A statistical theory of fracture. Metals Technology, 14(5), 1-16.
  • [15] Vytvytsky, P., & Popina, S. (1980). Strength and Criteria of Brittle Fracture of Stochastically Defective Bodies. Kyiv, 186 (in Russian).
  • [16] Sih, G., & Liebowitz, H. (1968). Mathematical Theories of Brittle Fracture. Fracture, in Mathematical Fundamentals of Fracture, 2. New York: Academic Press, 67-190.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58f20898-1a04-4c0a-b82b-6e2334faf73c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.