PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of cargo handling operation efficiency in the Clarion-Clipperton Zone for standard bulk carriers in the view of significant amplitudes of roll as a limiting criterion

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experienced ship roll during loading is the easiest parameter to observe and measure on board of a loaded ship. Therefore, the ship’s significant roll amplitudes should be the key limiting factor in view of the safety and efficiency of cargo handling operations at sea. For the example of three standard bulk carriers, the authors prepared a method of assessment of bulk carrier suitability to perform safe and efficient cargo handling operations in the Clarion-Clipperton Zone in view of significant amplitudes of roll. Via a calculation of the efficiency index for a set of limiting amplitudes of roll during loading simulation, we are able to analyze ship effectiveness. The application of the above-mentioned method can be employed as a useful tool to predict the lowest allowable significant amplitudes of roll when the required efficiency level is specified. Additionally, a calculation is made for the operable days where cargo operations are possible. Investigations show that, according to applied criteria, the effectiveness drops, and not every bulk carrier can perform safe cargo handling operations at sea.
Rocznik
Strony
55--64
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Maritime University of Szczecin, Faculty of Navigation 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland
Bibliografia
  • 1. Agarwal, B., Hu, P., Placidi, M., Santo, H. & Zhou, J.J. (2012) Feasibility Study on Manganese Nodules Recovery in the Clarion-Clipperton Zone. The LRET (Lloyd’s Registry Educational Trust) Collegium 2012 Series, Volume 2, Edited by R.A. Shenoi, P.A. Wilson and S.S. Bennett. Southampton: University of Southampton.
  • 2. American Bureau of Shipping (2016) Guidance notes on selecting design wave by long term stochastic method. Houston.
  • 3. Arslan, S.N. & Yavuz, A. (2021) Frequency-domain ship motion code with Python programming language. Journal of ETA Maritime Science 9(4), pp. 283–291, doi: 10.4274/ jems.2021.48303.
  • 4. Cepowski, T. & Kacprzak, P. (2019) An analysis of vertical shear forces and bending moments during nodule loading for a standard bulk carrier in the Clarion-Clipperton Zone. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 60 (132), pp. 184–191, doi: 10.17402/388.
  • 5. Chen, K.-C., Huang, C.-H., Chen, C.-C. & Wang, P.-W. (2013) Bulk carrier’s motion analysis with sloshing effect in water ballast cargo hold. In Proceedings of the Eighth International Workshop on Ship Hydrodynamics, September 23–25, 2013, Seoul, Korea, pp. 1–5.
  • 6. DeepGreen Metals Inc (2021) Technical Report Summary TOML Mineral Resource, Clarion Clipperton Zone, Pacific Ocean DeepGreen Metals Inc. Brisbane.
  • 7. DG Maritime Affairs and Fisheries (2014) Study to investigate the state of knowledge of deep-sea mining.
  • 8. Dreiseitl, I. (2017) About geotechnical properties of the deep seabed polymetallic nodules. In 18th International Conference on Transport and Sedimentation of Solid Particles. Prague, pp. 67–74.
  • 9. Dudziak, J. (2008) Teoria Okrętu. II. Gdańsk: Fundacja Promocji Przemysłu Okrętowego i Gospodarki Morskiej.
  • 10. Elzinga, T., Iribarren, J.R. & Jensen, O.J. (1992) Movements of moored ships in harbours. Costal Engineering Proceedings 1(23), pp. 3216–3229.
  • 11. IACS (2014) Pt 1, Ch 4, Sec 2, EDW Definition of Extreme Loads. London.
  • 12. IACS (2018) Guidance and Information on Bulk Cargo Loading and Discharging to Reduce the Likelihood of Over-stressing the Hull Structure.
  • 13. Journee, J.M.J. & Adegeest, L.J.M. (2003) Theoretical Manual of Strip Theory Program “SEAWAY for Windows” Release 4.19. The Netherlands: Delft University of Technology.
  • 14. Karppinen, T. (1987) Criteria for sea-keeping performance predictions. Report no. nstm 87. Available from: http://resolver.tudelft.nl/uuid:653c7085-a31e-407c-9b57- e9770525fbab [Accessed: June 23, 2023].
  • 15. Kozłowska-Roman, A. & Mikulski, S. (2021) Chemical and morphological characterization of polymetallic (MnFe) nodules from the Clarion-Clipperton Zone in the Pacific Ocean. Geological Quaterly 65 (4), pp. 1–18. doi: 10.7306/ gq.1626.
  • 16. Lipton, I.T. & Nimmo, M.J. (2016) NI 43-101 Technical Report TOML Clarion Clipperton Zone Project, Pacific Ocean. 17. Ma, S., Wang, R., Zhang, J., Duan, W., Ertekin, R.C.
  • 17. Ma, S., Wang, R., Zhang, J., Duan, W., Ertekin, R.C. & Chen, X.B. (2016) Consistent formulation of ship motions in time-domain simulations by use of the results of the strip theory. Ship Technology Research 63(3), pp. 146–158, doi: 10.1080/09377255.2016.1245471.
  • 18. Mudronja, L., Vidan, P. & Parunov, J. (2015) Review of sea-keeping criteria for container ship sustainable speed calculation in rough weather. In: MARTECH 2014 Maritime Technology and Engineering, 15–17.10.2014, Lisabon, Portugal. Available from: http://bib.irb.hr/datoteka/848858. Mudros.pdf [Accessed: June 23, 2023].
  • 19. Nguyen, T.H.H. & Tran, N.T. (2018) Prediction of ship motions in head waves using linear strip theory. Journal of Transportation Science and Technology 27+28, pp. 98–103.
  • 20. OCIMF (2013) Ship to Ship Transfer Guide for Petroleum, Chemicals and Liquefied Gases. Witherby Seamanship International Ltd.
  • 21. Pesman, E., Bayraktar, D. & Taylan, M. (2013) Influence of damping on the roll motion of ships. In 2nd International Conference on Marine Research and Transportation, Ischia, Naples, Italy, pp. 127–134.
  • 22. Puchalski, J. & Soliwoda, J. (2008) Eksploatacja Masowców. Gdynia: TRADEMAR.
  • 23. Riggs, H.R., Ertekin, R.C. & Mills, T.R.J. (1998) Wave-induced response of a 5-module mobile offshore base. OMAE’98, Lisbon, Ocean Space Utilization Symposium, Revised 06/98.
  • 24. Sharma, R. (2011) Deep-sea mining: economic, technical, technological and environmental considerations for sustainable development. Marine Technology Society Journal 45(5), pp. 28–41.
  • 25. Tezdogan, T. & Taylan, M. (2011) A comparative study on ship motions: Theory vs. model experiments. 1st International Symposium on Naval Architecture and Maritime, Istanbul, Turkey, pp. 329–335.
  • 26. van Laar, G. (2021) Sustainable Transport of Polymetallic Nodules. Master thesis, TU Delft. Available at: https:// repository.tudelft.nl/islandora/object/uuid%3Aac42edbaa4ca-49ec-bb99-1c1b0b203f20 [Accessed: June 23, 2023].
  • 27. van Nijen, K., van Passel, S. & Squires, D. (2018) A stochastic techno-economic assessment of seabed mining of polymetallic nodules in the Clarion Clipperton Fracture Zone. Marine Policy 95, pp. 133–141, doi: 10.1016/j.marpol.2018.02.027
  • 28. Vercruijsse, P. & Kovacs, Z. (2018) Blue Nodules Deliverable Report: D4.4 Ship to Ship to Shore Transfer. Available from: http://www.blue-nodules.eu/download/ public_reports/public_summary_reports/Blue-Nodules688975-D4.4-Ship-to-Ship-to-Shore-Transfer-FINAL.- publ-summ.pdf [Accessed: June 23, 2023].
  • 29. Vrij, A. & Boel, S. (2020) Blue Nodules Deliverable Report: D4.5 Mining Platform. Available from: https:// blue-nodules.eu/download/public_reports/public_reports/ Blue-Nodules-688975-D4.5-Mining-Platform-FINAL-revised-20201016.pdf [Accessed: June 23, 2023].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58e3a965-0eca-4b0e-be1a-0423976b095d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.