PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Exploring the interactions between mining and climate change: a bibliometric analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increasing demand for minerals has placed huge pressure on the mining industry to increase production, which consequently affects the environment, and, thus, contributes to climate change. Coal extraction has been reported to be a major contributor to global CO2 emissions, mainly due to the burning of fossil fuels. As a consequence, the frequency and severity of extreme climatic events have also increased throughout the world. Mining is essential for the development of society but contributes to climate change. On the contrary, extreme weather events and rising temperatures associated with climate change affect the overall productivity of mining companies. To develop an understanding of climate change and the mining nexus, the present study aimed to conduct a comprehensive bibliometric analysis, focusing on the keywords “Mining Impact” AND “Climate Change”. A total of 4814 documents from the SCOPUS database were analyzed using the Bibliometrix library of R software. The results of this analysis are presented considering trending keywords of the selected topic, the pattern of publications, global citations, and countrywide contributions. The findings from these results suggested that adopting scientific mine closure practices and incorporating green engineering or approaches in mining can be helpful in reducing the impact of mining activities on climate change.
Rocznik
Strony
436--449
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Institute of Technical Education and Research (ITER), Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
  • Institute of Technical Education and Research (ITER), Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
autor
  • Environment Department, Central Mine Planning and Design Institute, Bhubaneswar, Odisha, India
  • Department of Chemical Engineering, Marwadi University, Rajkot, Gujarat, India
Bibliografia
  • [1] Ericsson M, L€of O. Mining’s contribution to national economies between 1996 and 2016. Miner. Econ. 2019;32(2): 223e50.
  • [2] Xu Z, Hou H, Zhang S, Ding Z, Ma C, Gong Y, Liu Y. Effects of mining activity and climatic change on ecological losses in coal mining areas. Trans. Chin. Soc. Agric. Eng. 2012;28(5): 232e40.
  • [3] Azadi M, Northey SA, Ali SH, Edraki M. Transparency on greenhouse gas emissions from mining to enable climate change mitigation. Nat. Geosci. 2020;13(2):100e4.
  • [4] Mohammed KS, Pata UK. Linking the utilization of mineral resources and climate change: a novel approach with frequency domain analysis. Geosci. Front. 2024;15(3):101683.
  • [5] Onifade M, Zvarivadza T, Adebisi JA, Said KO, Dayo- Olupona O, Lawal AI, et al. Advancing toward sustainability: the emergence of green mining technologies and practices. Green Smart Min. Eng. 2024;1(2):157e74.
  • [6] Liu LY, Ji HG, Lü XF, Wang T, Zhi S, Pei F, et al. Mitigation of greenhouse gases released from mining activities: a review. Int. J. Miner. Metall. Mater. 2021;28:513e21.
  • [7] Pandey B, Gautam M, Agrawal M. Greenhouse gas emissions from coal mining activities and their possible mitigation strategies. In: Environmental Carbon Footprints. Butterworth-Heinemann; 2018. p. 259e94.
  • [8] Ranjan R. Assessing the impact of mining on deforestation in India. Resour. Policy 2019;60:23e35.
  • [9] Pearce TD, Ford JD, Prno J, Duerden F, Pittman J, Beaumier M, et al. Climate change and mining in Canada. Mitig. Adapt. Strategies Glob. Change 2011;16:347e68.
  • [10] Odell SD, Bebbington A, Frey KE. Mining and climate change: a review and framework for analysis. Extr. Ind. Soc. 2018;5(1):201e14. https://doi.org/10.1016/j.exis.2017.12.004.
  • [11] Rajulapati CR, Abdelmoaty HM, Nerantzaki SD, Papalexiou SM. Changes in the risk of extreme temperatures in megacities worldwide. Clim. Risk Manag. 2022;36:100433.
  • [12] Phillips J. Climate change and surface mining: a review of environment-human interactions & their spatial dynamics. Appl. Geogr. 2016;74:95e108.
  • [13] Bebbington AJ, Bury J, Cuba N, Rogan J. Mining, risk and climate resilience in the ‘other’ Pacific: Latin American lessons for the South Pacific. Asia Pac. Viewp. 2015;56(2): 189e207.
  • [14] Bimpong P, Addai B, Achinah SK. Analysis of the causal nexus between mining exports and the environment. Resour. Policy 2022;79:103003.
  • [15] Scholten J, De Melo E, Brunet ND. Mining, climate change and Indigenous Peoples in Ontario, Canada: intersecting impacts and the role of corporate social responsibility. In: Local Communities and the Mining Industry. Routledge; 2023. p. 158e76.
  • [16] Best R, Burke PJ. Adoption of solar and wind energy: the roles of carbon pricing and aggregate policy support. Energy Policy 2018;118:404e17.
  • [17] Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Bald e AB, et al. The Lancet Commission on pollution and health. Lancet 2018;391(10119):462e512.
  • [18] Prasad AM, Iverson LR, Liaw A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 2006;9:181e99.
  • [19] Liu Z, Guan D, Wei W, Davis SJ, Ciais P, Bai J, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015;524(7565):335e8.
  • [20] Walling DE, Fang D. Recent trends in the suspended sediment loads of the world’s rivers. Global Planet. Change 2003; 39(1e2):111e26.
  • [21] Estrada A, Garber PA, Rylands AB, Roos C, Fernandez- Duque E, Di Fiore A, et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. 2017;3(1).
  • [22] Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, et al. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 2006; 20(15):3335e70.
  • [23] Aminikhanghahi S, Cook DJ. A survey of methods for time series change point detection. Knowl. Inf. Syst. 2017;51(2): 339e67.
  • [24] Tilman D, Clark M, Williams DR, Kimmel K, Polasky S, Packer C. Future threats to biodiversity and pathways to their prevention. Nature 2017;546(7656):73e81.
  • [25] Shotyk W, Weiss D, Appleby PG, Cheburkin AK, Frei R, Gloor M, et al. History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 1998;281(5383):1635e40.
  • [26] Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Escobar E, et al. Man and the last great wilderness: human impact on the deep sea. PLoS One 2011;6(8).
  • [27] Qu Z, Wang J, Zhang M. Mining and analysis of public sentiment during disaster events: the extreme rainstorm disaster in megacities of China in 2021. Heliyon 2023;9(7): e18272. https://doi.org/10.1016/j.heliyon.2023.e18272.
  • [28] Janson E, Markowska M, Labaj P, Wrana A, Zawartka P. A preliminary assessment of climate change impacts - implications for mining activity in polish coal regions. Arch. Min. Sci. 2020;65(3):703e17. https://doi.org/10.24425/ams. 2020.134142.
  • [29] Sun Y, Yang Y, Huang N, Zou X. The impacts of climate change risks on financial performance of mining industry: evidence from listed companies in China. Resour. Policy 2020; 69:101828. https://doi.org/10.1016/j.resourpol.2020.101828.
  • [30] Qi XL, Xu HJ, Chen T, Shan SY, Chen SY. Effects of climate change, coal mining and grazing on vegetation dynamics in the mountain permafrost regions. Ecol. Inform. 2022;69: 101684. https://doi.org/10.1016/j.ecoinf.2022.101684.
  • [31] Das S, Jena D, Mishra P, Daoun A, Ganesha HS, Pradhan T, Patra PK. Climate change and agriculture in a mining context of Odisha, India. Multidiscip. Sci. J. 2024;6(10). https://doi. org/10.31893/multiscience.2024208.
  • [32] Punia A. Role of temperature, wind, and precipitation in heavy metal contamination at copper mines: a review. Environ. Sci. Pollut. Res. 2021;28(4):4056e72. https://doi.org/10. 1007/s11356-020-11580-8.
  • [33] Anawar HM. Impact of climate change on acid mine drainage generation and contaminant transport in water ecosystems of semi-arid and arid mining areas. Phys. Chem. Earth 2013; 58e60:13e21. https://doi.org/10.1016/j.pce.2013.04.002.
  • [34] Yu B, Liu J, Lyu T, Li Z, Wang M, Yang W. A new detection method to assess the influence of human activities and climate change of CO2 emissions in coal field. Ecol. Indic. 2022;143:109417. https://doi.org/10.1016/j.ecolind.2022.109417.
  • [35] Jiskani IM, Cai Q, Zhou W, Shah SAA. Green and climatesmart mining: a framework to analyze open-pit mines for cleaner mineral production. Resour. Policy 2021;71:102007.
  • [36] Bulovic N, McIntyre N, Trancoso R. Climate change risks to mine closure. J. Clean. Prod. 2024;465:142697. https://doi.org/ 10.1016/j.jclepro.2024.142697.
  • [37] Feijoo F, Flores F, Kundu A, Pfeifer A, Herc L, Prieto AL, Duic N. Tradeoffs between economy wide future net zero and net negative economy systems: the case of Chile. Renew. Sustain. Energy Rev. 2025 Jan 1;207:114945. https://doi.org/ 10.1016/j.rser.2024.114945.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58e21fcf-1741-41d9-9d54-a126895400fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.